Firmansyah, Muhamad (2024) IMPLEMENTASI ALGORITMA DECISION TREE DALAM KLASIFIKASI OPINI PENGGUNA MEDIA SOSIAL X (TWITTER) TERHADAP JNE DI INDONESIA. Undergraduate thesis, Universitas Stikubank.
PDF (HALAMAN JUDUL)
Download (923kB) |
|
PDF (ABSTRAK)
Download (169kB) |
|
PDF (BAB I)
Download (132kB) |
|
PDF (BAB II)
Restricted to Repository staff only Download (566kB) |
|
PDF (BAB III)
Restricted to Repository staff only Download (1MB) |
|
PDF (BAB IV)
Restricted to Repository staff only Download (1MB) |
|
PDF (BAB V)
Restricted to Repository staff only Download (124kB) |
|
PDF (DAFTAR PUSTAKA)
Download (189kB) |
|
PDF (LAMPIRAN)
Restricted to Repository staff only Download (720kB) |
Abstract
JNE, salah satu perusahaan ekspedisi terdepan di Indonesia, hadir dengan jaringan yang tersebar di seluruh penjuru tanah air, sehingga memudahkan masyarakat dalam mengirim barang ke seluruh daerah di Indonesia. Dengan banyaknya pengguna JNE, muncul beragam opini pengguna yang tersebar di media sosial, baik itu opini positif maupun negatif. Untuk mengelompokkan opini-opini ini secara efektif, diperlukan penggunaan program machine learning. Algoritma yang menjadi kunci untuk mengklasifikasikan opini adalah Decision Tree. Sebelum proses klasifikasi dilakukan, data tweet yang telah dikumpulkan harus melalui tahap pelabelan data dan preprocessing agar dapat dikenali oleh sistem secara maksimal. Saat penelitian ini dilakukan, dengan penggunaan rasio perbandingan antara data training dan data testing 90:10, maka algoritma Decision Tree dapat mencapai akurasi sebesar 88,10%. Ini menunjukkan potensi yang signifikan dalam klasifikasi opini pengguna. JNE is one of the leading goods delivery service companies in Indonesia which has a wide network, making it easier for people to send goods to all regions in Indonesia. With so many JNE users, various user opinions have emerged on social media, both positive and negative views. Grouping these opinions effectively requires the use of machine learning programs. One of the algorithms used to classify opinions is a Decision Tree. Before the classification process is carried out, the tweet data that has been collected must go through the data labeling and preprocessing stages so that it can be recognized by the system properly. In this research, by using a ratio of training data to testing data of 90:10, the Decision Tree algorithm can achieve an accuracy of 88.10%. This shows significant potential in user opinion classification.
Item Type: | Thesis (Undergraduate) |
---|---|
Additional Information: | SKR.I.05.01.2444 NIM.18.01.53.2014 |
Uncontrolled Keywords: | JNE, Analisis Sentimen, Text Mining,, Decision Tree. JNE, Sentiment Analysis, Text Mining,, Decision Tree. |
Subjects: | Q Science > QA Mathematics > QA76 Computer software |
Faculty / Institution: | Fakultas Teknologi Informasi > Program Studi Teknik Informatika |
Depositing User: | Teteh Hayati |
Date Deposited: | 09 Sep 2024 07:22 |
Last Modified: | 09 Sep 2024 07:22 |
URI: | https://eprints.unisbank.ac.id/id/eprint/10180 |
Actions (login required)
View Item |