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Abstract Particle Swarm Optimization (PSO), one of the versatile nature-inspired optimization 

algorithm, continue to suffer from premature convergence despite the numerous amount of 

research trying to improve this algorithm. Many research had tried to address this issue but often 

use a complex algorithm which tax on computational time and complexity. This research 

introduced a novel perturbation method to mitigate premature convergence / to increase 

exploration while keeping the computational cost at a minimum. The particles' memories (i.e 

the position of personal and global best) are modified by a random multiplier which in turn will 

‘perturb’ the particles’ velocity. The implementation of this novel perturbation method in early 

iterations had resulted in 100% success rate in finding global optima in multimodal benchmark 

tests including the Rastrigin problem – whereas the original PSO failed in all benchmark tests – 

without adding a significant amount of computational complexity and time. 
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1. Introduction 

Particle Swarm Optimization (PSO) is a versatile optimization algorithm used in several areas. The 

original PSO was introduced in 1995 by Eberhart and Kennedy, and had gained popularity in research 

to further improve the algorithm, customized it to particular problems, and combined it with other 

algorithms.  

Some of the PSO enhancement strategies include the use of multi-sub-populations[1], particle 

restart[2], combining PSO with other search techniques[1], using different neighborhood topologies[3],  

and by having a better initial population [4]. Despite the rigorous research in PSO, one of the main 

problems which still remains for PSO is premature convergence, especially in problem with many local 

optima.  

Many research had addressed this issue by incorporating perturbation to increase 

diversification/exploration. This kind of modification often incorporate complex computation and thus 

increase its computational and time cost. This research proposed a novel and simple perturbation 

method to mitigate premature convergence / to increase diversification/exploration while keeping the 

computation overhead at its minimum. 
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2. Literature Review 

2.1. The Original PSO 

PSO algorithm is inspired by how birds or fish flock for food. Individual / candidate solutions in PSO 

are called 'particles'. Each particle will move randomly in the search space to find the best solution. In 

each iteration, particles will move closer to the best solution by learning from the experience of the 

particle itself (cognitive learning, c1, applied to personal best, x*) and from other particle experiences 

(social learning, c2, applied to global best, xg). The c1 and c2 are positive constants which usually set 

to = 2. The formula of particle movement or “velocity update” vi at t+1 is shown in Equation 1. 

𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + 𝑐1𝑟1[𝑥𝑖
∗(𝑡) − 𝑥𝑖(𝑡)] + 𝑐2𝑟2[𝑥𝑔(𝑡) − 𝑥𝑖(𝑡)] 

The search capability of PSO in finding optimum solution lies in the tuning of particle’s exploration 

and intensification in their movements[2], [5]. Exploration is when the particles explore a wider range 

of possibility, while intensification is when the particles move ‘slowly’ to find a better solution near a 

good solution (i.e the particles’ memory of global best / personal best). 

2.2. PSO problem: premature convergence 
Research had shown that PSO tends to converge quickly (prematurely)[6], [7]. This characteristic of 

PSO will consequently cause a failure in finding an optimal solution, especially in a multimodal 

problem – a problem with multiple “good solutions” and one optimum solution. In a multimodal 

problem, PSO will tend to prematurely converge to / “trapped” in the “good solution” / local optima. 

This problem with the original PSO is called premature convergence[3], [4], [7]–[11]. Analysis showed 

that the premature convergence and the ability to find best solution / global optimum of PSO are both 

probabilistic[7], [12]. 

There had been numerous research which attempted to alleviate this issue such as[8], [9]. Some of 

the common strategies include the use of inertia weight and perturbation (explained later). These 

research often use a complex algorithm. The persistent premature convergence problem might mean 

that PSO needs exploration in general. It had been noted that the performance of the PSO mostly relies 

upon inertia weight and optimal parameter setting [10], [13], [14]. These parameters will affect the 

exploration and intensification ability of particles in PSO, thus research in solving premature 

convergence will focus on these parameter tuning. 

2.3. Solving The Premature Convergence Problem: Exploration and Intensification Tuning 

2.3.1. The Inertia Weight Strategy 

The first attempt to tune the exploration and intensification is to incorporate inertia weight (IW)[15], 

which is not present in the original PSO. The inertia weight (α or w) refers to the amount of the 

contribution of the previous particle velocity to its current velocity. Inertia weight is intended to balance 

the exploitation and exploration when the particles are searching for optimal solution in a search 

space[13]. [15] used a randomized IW and in 1998, Shi and Eberhart used a linearly decreasing inertia 

weight (LDIW) (α) into the algorithm[16]. 

𝑣𝑖(𝑡 + 1) = 𝛼𝑣𝑖(𝑡) + 𝑐1𝑟1[𝑥𝑖
∗(𝑡) − 𝑥𝑖(𝑡)] + 𝑐2𝑟2[𝑥𝑔(𝑡) − 𝑥𝑖(𝑡)] 

Where the value of α gradually decreases from α max to α min throughout the iterations: 

𝛼(𝑡) = 𝛼𝑚𝑎𝑥 − (𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛)
𝑡

𝑇
 

When w = 0, particle speed will only be affected by the personal best and global best position. This 

means that the particles will immediately change their position to the best position once the best position 

is known. A small value of w will increase intensification (local search). In contrast, when w is high, 

the current velocity of the particle will be affected by the previous velocity (inertia). Such particles 

maintain the previous speed even though a better position is known. A high value of w will increase 

diversification (global search). To successfully find the optimum values (maximum or minimum), high 

diversification is needed at the beginning of the iteration, while intensification is needed later in the 

iteration[17]. This can be achieved simply by using a linearly decreasing inertia weight. However, 
research had pointed out that LDIW strategy will cause PSO to prematurely converge to local optimum 

in multimodal problems[18], [19]. Other research also used an adaptive selection of inertia weight in 
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which the value of inertia weight will be set according to certain criteria within the process of finding 

an optimum solution, such as in [20]. However, research also showed that LDIW is still a competitive 

strategy compared to other IW strategies if it’s parameters are set properly[18]. 

 

Table 1. Research on inertia weight strategies in PSO 
Reference Inertia-weight strategy Note 

Y. Shi and R. Eberhart, 1998 [16] Linearly decreasing LDIW runs from 1.4 to 0 

Bansal et al., 2011[19] Linearly decreasing Best LDIW runs from 0.9 to 0.4 

Arasomwan, 2013[18] Linearly decreasing LDIW is still competitive against other variants 

Farooq et al., 2017[4] Linearly decreasing LDIW in [19] applied twice 

Nobile et al., 2018[14] Self-tuning Fuzzy logic 

Agrawal, 2018[13] Adaptive Cumulative binomial probability 

A. Agrawal and S. Tripathi, 2019 [15] Adaptive Binomial probability distribution 

 

2.3.2. The Perturbation Strategy 

Another attempt to alleviate premature convergence is by the use of ‘perturbation’. A perturbation 

is a way to ‘randomize’ the particles’ movement so that they can explore a more diverse candidate 

solution in the attempt to find the global optimum. The list of research in PSO perturbation strategy and 

the position of this research are shown in Table 2. 

Table 2. Research on perturbation strategies in PSO 

Reference 
Object of 

perturbation 
Perturbation method 

 
Additional strategy 

Zhihao Yuan et al., 2005[21] Global best Random number  Inertia weight jump 

threshold 

S. Das, A. Konar, and U. K. Chakraborty, 
2005[22] 

Particles’ position 
vectors 

Differentially perturbed 
Velocity 

 - 

A. M. Zavala, A. H. Aguirre, and E. V. 

Diharce, 2007[23] 

Personal best C-perturbation (Differential 

Evolution) and M-perturbation 

 - 

A. H. Aguirre, A. M. Zavala, E. V. 

Diharce, and S. B. Rionda, 2007[24] 

Personal best Same as [23]  Constraint handling 

E. Yang, A. Erdogan, T. Arslan, and N. 

Barton, 2007[25] 

Global best and 

personal best 

Random number  - 

Maeda, 2007 [26] Inertia weight Simultaneous perturbation based on 

particles’ gradient 

 - 

Xinchao, 2010 [11] Global best Possibility theory  - 

R. Kundu, S. Das, R. Mukherjee, and S. 

Debchoudhury, 2014[10] 

Global best Difference mean  Aging guideline, 

acceleration coefficients 

L. Mengxia, L. Ruiquan, and D. Yong, 

2016[27] 

Swarm membership Elitism  Anderson chaotic 

mapping 

This research Global best and 

personal best 

Random number  Linear decreasing inertia 

weight 

3. Method 

In the standard PSO method, the "perturbation" is only applied to the difference between personal best 

and global best with the current particle position. The disadvantage of this method is that it limits the 

exploration capability of particles which can actually be greater. (Yang et. Al., 2007) proposed a new 
way to maintain diversification by applying direct ‘perturbation’ to the (current) personal best and 

global best in each iteration[25]. It uses two random number, r3 and r4, whinge range from -2 to 2, r [-

2,2]. The formula for particles’ velocity in [25] is shown in Equation 2. 

 

𝑣𝑖(𝑡 + 1) = 𝛼𝑣𝑖(𝑡) +
[(1 +  𝑟3)𝑥𝑝𝑖(𝑡) −  𝑥𝑖(𝑡)]

3
 + 

[(1 +  𝑟4)𝑥𝑔(𝑡) −  𝑥𝑖(𝑡)]

3
 

Inspired by[25], we propose a perturbation k*r which are applied to personal best and global best as 

shown in Equation 3. This modification will cause the particle to have a probabilistic movement within 

the enclosed area shown in Figure 2. With r is a random number between 0 to 1, r [0,1]. When k is set 

to 2, the (k*r) will produce perturbation that ranges from 0 to 2 and is applied as a multiplier for the 
personal best and global best. The perturbation is applied to both personal and global best as an attempt 

to further increase the exploration capability of the particles. 

𝑣𝑖(𝑡 + 1) = 𝛼𝑣𝑖(𝑡) + 𝑐1𝑟1[𝑘1𝑟3𝑥𝑖
∗(𝑡) − 𝑥𝑖(𝑡)] + 𝑐2𝑟2[𝑘2𝑟4𝑥𝑔(𝑡) − 𝑥𝑖(𝑡)] 
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Figure 1. Comparison of particle movement in the original PSO (fuchsia arrow) vs the area of possible 

movement caused by perturbation (blue rectangle) where the yellow point is the previous best and the 
red point is the new best 

 

 We also experiment with a combination of IW proposed by Y. Shi and R.C. Eberhart [16] and 

use several range values of linear-decreasing iw. Here, we experiment with a w range that is somewhat 

wider (1-0) to see if the performance will get better. Experiments were done using Java programming 

language run in Netbeans. For all experiments, the parameter is set as follows: population= 50; max 

iteration= 100; xmax = 100; xmin = -100, vmax = 100, vmin= -100, C1 = 2, C2 = 2, k1 =2, k2=2, and r[0,1]. 

IW is set with αmax = 1 and αmin = 0.Each experiment setting/type is repeated 1000 times. Then the 

success rate, min value and SD of min value for each test cases are calculated and compared. 

4. Result 

Based on 50 tests of each of the five function tests, the results of the combination of the Linearly-

Decreasing Inertia-Weight (LDIW) and Memory Perturbation (MP) methods produced a 100% success 

rate in finding the minimum global for all test functions. This perturbation is only needed several times 

at the beginning of the iteration. Based on testing, the initial 10 iterations have given satisfactory results. 

The use of perturbation that is too long will actually weaken the power of LDIW's intensification. With 

'nip' is the amount of perturbation we want at the beginning of the iteration (number of initial 

perturbation). 

 

 

 Table 3. Performance comparison between the original PSO, LDIW PSO, and LDIW-MP PSO 

 Sphere Schwefel 2.22 Rosenbrock Rastrigin Ackley 

Standard PSO 

Mean 2,148973289 0,001496959 146,7146708 25,67040415 2,148973289 

Std Dev 2,941967592 0,003330213 239,284953 17,058624 2,941967592 

Success rate 0% 0% 0% 0% 0% 

LDIW PSO 

Mean 0 0 0 0,119299392 0 

Std Dev 0 0 0 0,323064281 0 

Success rate 100% 100% 100% 88% 100% 

LDIW MP-PSO 

Mean 0 0 0 0 0 

Std Dev 0 0 0 0 0 

Success rate 100% 100% 100% 100% 100% 

 

The use of this LDIW-MP PSO method yielded satisfactory results with a 100% success rate in 

finding the minimum global in Sphere function, Schwefel Problem 2.22, Rosenbrock, and Ackley. But 
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for Rastrigrin's function, the success rate is still around 88%. In the 12% of the experiments carried out, 

particles still trapped in local minima near the minimum global. This is understandable because the 

Rastrigin function does have many "traps" (local minima). This failure in the Rastrigin function is 

caused by the characteristics of the (standard) PSO where which the particles are “trapped” in a solution 

which appears to be the global minimum but is actually a local optimum. 

To increase success in the Rastrigin function, an additional method is needed to maintain 

diversification so that particles can further explore the search space before determining the area for 

intensive searches. By maintaining diversification for some time, it is expected that particles can explore 

a more diverse search space and hopefully can visit an area near the minimum global – the 

intensification will proceed the digging into the minimum value.  

The result showed that the best use of this perturbation method is to be applied only several times 

(10 times) in the initial iterations. Prolonged use of this perturbation will only result in particles moving 

randomly and failed to find global optimum, which is not what we want. 

5. Conclusion 

Despite a large amount of research, PSO still suffers from premature convergence where the particles 

are trapped in a sub-optimal solution in a multimodal problem. This research aims to explore a new 

strategy to increase the particles exploration capacity of particles in PSO in order to increase its 

capability to find the global optimum. Two perturbation factors are applied to global best and personal 

best to increase the exploration of search space in the hope of that the particle will stop at a point near 

the global optimum and continue to dig into the minimum value. The experimental result showed that 

this applying this perturbation method in early iteration, and combined it with LDIW can achieve 100% 

success rate in finding global optimum in five benchmark problems, i.e the Sphere function, Schwefel 

Problem 2.22, Rosenbrock, Rastrigin, and Ackley. Compared to other research, this research proposes 

a simple perturbation method which did not add a significant amount of computation complexity and 

time. The limitation of this study is that this method was only benchmarked against 2D problems. 

Further researches are open to experimenting on problems with a higher dimension. 

 

References 

[1] D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm: an overview,” Soft 

Comput., vol. 22, no. 2, pp. 387–408, Jan. 2018. 

[2] D. Tamayo-Vera, S. Chen, A. Bolufé-Röhler, J. Montgomery, and T. Hendtlass, “Improved 

Exploration and Exploitation in Particle Swarm Optimization,” 2018, pp. 421–433. 

[3] K.-L. Du and M. N. S. Swamy, “Particle Swarm Optimization,” in Search and Optimization by 
Metaheuristics, Cham: Springer International Publishing, 2016, pp. 153–173. 

[4] M. U. Farooq, A. Ahmad, and A. Hameed, “Opposition-based initialization and a modified 

pattern for Inertia Weight (IW) in PSO,” in 2017 IEEE International Conference on 

INnovations in Intelligent SysTems and Applications (INISTA), 2017, pp. 96–101. 

[5] M. Oliveira, D. Pinheiro, M. Macedo, C. Bastos-Filho, and R. Menezes, “Better exploration-

exploitation pace, better swarm: Examining the social interactions,” in 2017 IEEE Latin 

American Conference on Computational Intelligence (LA-CCI), 2017, pp. 1–6. 
[6] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” in Proceedings 

of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), pp. 1945–

1950. 

[7] G. Xu, Z. H. Wu, and M. Z. Jiang, “Premature convergence of standard particle swarm 

optimisation algorithm based on Markov chain analysis,” Int. J. Wirel. Mob. Comput., vol. 9, 

no. 4, p. 377, 2015. 

[8] S. U. Khan, O. U. Rehman, N. Khan, A. Khan, S. A. A. Shah, and S. Yang, “Improving the 

Diversity of PSO for an Engineering Inverse Problem using Adaptive Inertia Weight,” Teh. 
Vjesn. - Tech. Gaz., vol. 25, no. 6, pp. 1631–1637, Dec. 2018. 

[9] F. A. P. Paiva, J. A. F. Costa, and C. R. M. Silva, “A serendipity-based pso approach to delay 
premature convergence using scout particle,” Int. J. Innov. Comput. Inf. Control, vol. 12, no. 4, 

pp. 1349–4198, 2016. 

[10] R. Kundu, S. Das, R. Mukherjee, and S. Debchoudhury, “An improved particle swarm 



6 
 

optimizer with difference mean based perturbation,” Neurocomputing, vol. 129, pp. 315–333, 

Apr. 2014. 

[11] Z. Xinchao, “A perturbed particle swarm algorithm for numerical optimization,” Appl. Soft 
Comput., vol. 10, no. 1, pp. 119–124, Jan. 2010. 

[12] G. Xu and G. Yu, “Reprint of: On convergence analysis of particle swarm optimization 

algorithm,” J. Comput. Appl. Math., vol. 340, pp. 709–717, Oct. 2018. 

[13] A. Agrawal and S. Tripathi, “Particle swarm optimization with adaptive inertia weight based 

on cumulative binomial probability,” Evol. Intell., pp. 1–9, Nov. 2018. 

[14] M. S. Nobile, P. Cazzaniga, D. Besozzi, R. Colombo, G. Mauri, and G. Pasi, “Fuzzy Self-

Tuning PSO: A settings-free algorithm for global optimization,” Swarm Evol. Comput., vol. 

39, pp. 70–85, Apr. 2018. 

[15] A. Agrawal and S. Tripathi, “Particle Swarm Optimization with Probabilistic Inertia Weight,” 

Springer, Singapore, 2019, pp. 239–248. 

[16] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in 1998 IEEE International 

Conference on Evolutionary Computation Proceedings. IEEE World Congress on 

Computational Intelligence (Cat. No.98TH8360), pp. 69–73. 
[17] J. C. Bansal, P. K. Singh, M. Saraswat, A. Verma, S. S. Jadon, and A. Abraham, “Inertia 

Weight strategies in Particle Swarm Optimization,” in 2011 Third World Congress on Nature 
and Biologically Inspired Computing, 2011, pp. 633–640. 

[18] M. A. Arasomwan and A. O. Adewumi, “On the performance of linear decreasing inertia 

weight particle swarm optimization for global optimization.,” ScientificWorldJournal., vol. 

2013, p. 860289, Oct. 2013. 

[19] J. C. Bansal, P. K. Singh, M. Saraswat, A. Verma, S. S. Jadon, and A. Abraham, “Inertia 

Weight strategies in Particle Swarm Optimization,” in 2011 Third World Congress on Nature 

and Biologically Inspired Computing, 2011, pp. 633–640. 

[20] H. D. Purnomo and H.-M. Wee, “Particle swarm optimisation with adaptive selection of inertia 

weight strategy,” Int. J. Comput. Sci. Eng., vol. 13, no. 1, pp. 38–47, 2016. 

[21] Zhihao Yuan et al., “A Perturbation Particle Swarm Optimization for the Synthesis of the 

Radiation Pattern of Antenna Array,” in 2005 Asia-Pacific Microwave Conference 

Proceedings, vol. 3, pp. 1–4. 

[22] S. Das, A. Konar, and U. K. Chakraborty, “Improving particle swarm optimization with 

differentially perturbed velocity,” in Proceedings of the 2005 conference on Genetic and 

evolutionary computation  - GECCO ’05, 2005, p. 177. 

[23] A. M. Zavala, A. H. Aguirre, and E. V. Diharce, “Robust PSO-based constrained optimization 

by perturbing the particle’s memory,” in Swarm intelligence, focus on ant and particle swarm 
optimization, IntechOpen, 2007. 

[24] A. H. Aguirre, A. M. Zavala, E. V. Diharce, and S. B. Rionda, “COPSO: Constrained 

Optimization via PSO algorithm,” Cent. Res. Math. (CIMAT). Tech. Rep. No. I-07-04/22-02-
2007, vol. 77, 2007. 

[25] E. Yang, A. Erdogan, T. Arslan, and N. Barton, “An Improved Particle Swarm Optimization 

Algorithm for Power-Efficient Wireless Sensor Networks,” in 2007 ECSIS Symposium on Bio-

inspired, Learning, and Intelligent Systems for Security (BLISS 2007), 2007, pp. 76–82. 

[26] Y. Maeda and N. Matsushita, “Simultaneous Perturbation Particle Swarm Optimization Using 

FPGA,” in 2007 International Joint Conference on Neural Networks, 2007, pp. 2695–2700. 

[27] L. Mengxia, L. Ruiquan, and D. Yong, “The Particle Swarm Optimization Algorithm with 

Adaptive Chaos Perturbation.,” Int. J. Comput. Commun. Control, vol. 11, no. 6, 2016. 

 


