Universitas Stikubank (Unisbank) Semarang Repository

ANALISIS AKURASI MODEL ALTMAN Z-SCORE DAN GROVER SCORE DALAM MEMPREDIKSI FINANCIAL DISTRESS PERUSAHAAN (Studi Empiris pada Perusahaan Manufaktur Sektor Aneka Industri yang Terdaftar di Bursa Efek Indonesia Tahun 2017-2019)

Permatasari, Lenny Ajeng (2021) ANALISIS AKURASI MODEL ALTMAN Z-SCORE DAN GROVER SCORE DALAM MEMPREDIKSI FINANCIAL DISTRESS PERUSAHAAN (Studi Empiris pada Perusahaan Manufaktur Sektor Aneka Industri yang Terdaftar di Bursa Efek Indonesia Tahun 2017-2019). Undergraduate thesis, Universitas Stikubank.

[thumbnail of HLM JUDUL] PDF (HLM JUDUL)
Download (567kB)
[thumbnail of ABSTRAK] PDF (ABSTRAK)
Download (188kB)
[thumbnail of BAB 1] PDF (BAB 1)
Download (324kB)
[thumbnail of BAB 2] PDF (BAB 2)
Restricted to Repository staff only

Download (362kB)
[thumbnail of BAB 3] PDF (BAB 3)
Restricted to Repository staff only

Download (416kB)
[thumbnail of BAB 4] PDF (BAB 4)
Restricted to Repository staff only

Download (405kB)
[thumbnail of BAB 5] PDF (BAB 5)
Restricted to Repository staff only

Download (296kB)
[thumbnail of DAFTAR PUSTAKA] PDF (DAFTAR PUSTAKA)
Download (305kB)
[thumbnail of LAMPIRAN] PDF (LAMPIRAN)
Restricted to Repository staff only

Download (1MB)

Abstract

Penelitian ini bertujuan untuk mengetahui perbedaan prediksi financial distress pada perusahaan manufaktur sektor aneka industri tahun 2017-2019 dengan menggunakan model Altman Z-score dan Grover Score serta mengetahui diantara model AltmannZ-scoreodan Grover Score yang paling akurat dalam memprediksi potensi financial distress. Penelitian ini menggunakan data skunder berupa laporan keuangan dari Bursa Efek Indonesia. Populasi dalam penelitian ini adalah perusahaan manufaktur sektor aneka industri tahun 2017-2019 dengan menggunakan teknik purposive sampling. Teknik analisis data yang digunakan dalam penelitian ini adalah analisis deskriptif dan perhitungan tingkat akurasi model dengan menggunakan bantuan Microsoft excel. Berdasarkan hasil analisis akurasi financial distress model Altman Z-score dan Grover Score menunjukkan bahwa terdapat perbedaan diantara kedua model. Model Grover Score menunjukkan tingkat akurasi 85.7% dan merupakan model yang paling akurat dalam memprediksi financial distress. Saran dalam penelitian ini adalah untuk menambah periode penelitian, melakukan perbandingan dengan berbagai jenis perusahaan dan dapat menggunakan model prediksi lainnya serta menggunakan variabel EPS negatif. This study aims to determine differences in financial distress predictions in various industrial sector manufacturing companies in 2017-2019 using the Altman Z-score and Grover Score models and to find out which between the AltmannZ-score and Grover Score models are the most accurate in predicting potential financial distress. This study uses secondary data in the form of financial reports from the Indonesia Stock Exchange. The population in this study were various industrial sector manufacturing companies in 2017-2019 using purposive sampling technique. The data analysis technique used in this research is descriptive analysis and the calculation of the accuracy of the model using the help of Microsoft Excel. Based on the results of the analysis of the accuracy of financial distress, the Altman Z-score and Grover Score models show that there are differences between the two models. The Grover Score model shows an accuracy rate of 85.7% and is the most accurate model in predicting financial distress. Suggestions in this study are to increase the research period, make comparisons with various types of companies and can use other predictive models and use negative EPS variables.

Item Type: Thesis (Undergraduate)
Additional Information: SKR.V.05.52.2280 NIM.17.05.52.0089
Uncontrolled Keywords: Financial Distress, Altman Z-score, Grover Score
Subjects: H Social Sciences > HJ Public Finance
Faculty / Institution: Fakultas Ekonomika dan Bisnis > Program Studi Akuntansi
Depositing User: Farida Sri Endaryani
Date Deposited: 03 Jun 2021 03:52
Last Modified: 03 Jun 2021 03:52
URI: https://eprints.unisbank.ac.id/id/eprint/7766

Actions (login required)

View Item View Item