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Abstract. Tuberculosis is a serious infectious disease caused by Mycobacterium tuberculosis
(MTB) that primarily atfects the lungs. It is known that several strains of MTB are resistant to
drugs used in the treatment. This situation calls for the importance to detect and prevent further
drug resistance and thus reducing the mortality rate. The conventional molecular diagnostic test
is costly, requires a long time to conduct, and has low prediction ability. This research aims to
explore the Machine Learning approach to accurately predict drug resistance which offers a
much faster and cheaper solution than the conventional one. Experiments were carried out on
3393 isolates of MTB using several Machine Learning algorithms including C4.5, Random
Forest, and Logitboost. Multiple drugs evaluated in this study include rifampicin (RIF), isoniazid
(INH), pyrazinamide (PZA), and ethambutol (EMB). By using 10-fold cross-validation, the
result had demonstrated that the model can accurately predict drug resistance with an accuracy
of 99% and with Area Under Curve (AUC) reaching (near) 1. This result suggests that Machine
Learning approach has a promising result in predicting Tuberculosis drug resistance.

1. Introduction 7
Tuberculosis is a serious infectious disease caused by Mycobacterium tuberculosis (MTB) that primarily
cts the lungs and is one of the most deadly infectious disease in the world [1]. It is known that several
strains of MTB are resistant to drugs used in the treatment [2]. This situation calls for the importance to
detect and prevent further drug resistance and thus reducing the mortality rate. The conventional
molecular diagnostic test is costly, requires a long time to conduct, and has low prediction ability. The
whole-genome sequencing (WGS) captures the known and rare mutation of the MTB isolates that may
contribute to the drug resistan@). These mutations are used as the features for classifying the isolates if
they are resistant to a drug. This research aims to explore Machine Leaming (ML) techniques to
accurately predict drug resistance which offers a much faster and cheaper solution than the conventional
techniques.

2. Methods
Genetic datggof 3393 MTB isolates were retrieved from Kaggle. Multiple drugs evaluated in this study
include the first-line drugs, i.e. rifampicin (RIF), isoniazid (INH), pyrazinamide (PZA), and ethambutol
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(EMB). Positive classes for RIF, INF, and PZA are 61%, 54%, 66%, and 71% respectively. The data
have 222 columns representing the mutation sites alongside with the resistance class for each of the
drugs. The original data is coded with [0,1] but for the processing with Waikato Environment for
Knowledge Analysis (WEKA) software, we convert it to [F, T] respectively. The sample of the data is
shown in Table 1. Entries with missing values are omitted or not omitted depending on whether the ML
technique can handle missing values. Three ML methods are used namely C4.5, Random Forest (RF),
and Logitboost. C4.5 is a classification method based on tree structure introduced by Ross Quinlan [3].
Recent research had used C4.5 for wildfire modeling [4] and rain modeling [5]. RF is an ensemble
classification model that uses multiple trees to predict classes and use votes from those trees to determine
the final class label. Logitboost is a boosting technique that uses decision stumps (decision tree with a
single internal node). It is introduced by Frig#nan et.al. in 2020 [6]. The experiments were carried out
by using the WEKA software [7] and the smkit—@m Machine Leaming library in Python [8]. The
performance evaluations of the model are done by using metrics such as Precision, Accuracy, and Area
Under Curve (AUC).

Table 1. Sample of the data.

mutggion]l mutation2 ... mutation222 RIF

1] F T
T F T F
F F F 1]

? Results and discussion 5

Table 2 shows the performance compgggon of the models on each drug using the 10-fold cross-
validation technique. This result showed that the best model performance is specific to the data, although
the difference is minuscule. This result disagrees with previous research that certain models are better
than the other, e.g. ensemble vs single tree [9], Random Forest [10], Logistic regression, and gradient
tree boosting [11], although not yet tested against WDNN which performed better than regularized
logistic regression and random forest [ 12]. This study concluded that model performance is data-specific
which is also stated by Hicks et al [13]. However, this research produced a better result than recent
research [14]. The best methods in this research produced an average of 0.975 AUC on the first line
drugs which only slightly lower than other research where Logistic Regression and MD-WDNN
performed best with an average AUC of 0.979 [15]. Figure 1 shows a comparison of the best and worst
model’s AUC.

Next, additional parameter tunings were done using the scikit-learn Machine Learning library in
Python. These experiments were done using a test split of 0.1. When tuning the parameter for RF with
n trees =74 (222/3) and n tress = 50, the best result can have the AUC up to 1. The RF model accuracy
on different n_trees are shown in Table 3. This result again showed that the model performance is data-
specific (although can be minor) and can be affected by the parameter setting as also mentioned in
research on Random Forest [16]. It is concluded that parameter tuning can produce (slightly) better
model performance.

Table 2. Performance comparison of the models on each drug.

Drugs Model Precision Accuracy (%) AUC
RIF  J48 0.967 96.67 0.972
J48 (min 10 cases) 0.956 95.60 0.977
RF 0.951 95.00  0.99
Logitboost 0.950 95.00  0.99
INH J48 0.960 9595 0.967
J48 (min 10 cases) 0.961 96.10 0.961
RF 0.951 95.10 0.985

Logitboost 0.961 96.10 0.982

[¥]
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Table 2. Cont.

Drugs Model Precision Accuracy (%) AUC
PZA  J48 0.923 9221 0.923
J48 (min 10 cases) 0.925 92.49 0.943
RF 0919 91.74 0.959
Logitboost 0.908 90.82 0.944
EMB 48 0,916 91.44 0916
J48 (min 10 cases) 0918 91.62 0.945
RF 0,922 91.96 0.967
Logitboost 0911 91.20 0.963

Table 3. RF model accuracy on different n trees.

n trees=10 n trees=15 n trees=74 n trees =%
Ace AUC Acc AUC Ace AUC Ace AUC
RIF 0970 099 0970 099 0985 1.00 0985 1.00
INH 0945 097 0955 098 0960 0097 0960 097
PZA 0964 095 0964 094 0974 094 0974 093
EMB 0985 0.99 0979 099 0985 0.99 0985 0.99
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Figure 1. Comparison of the best and worst model’s AUC.

4. Conclusion ?
We experiment on using ML techniquato predict MTB drug resistance based on DNA data. The result
d demonstrated that ML techniques can accurately predict drug resistance with an accuracy of up to
9% and with Area Under Curve (AUC) reaching (near) 1. This result suggests that Machine Leaming
approach has a promising result in predicting Tuberculosis drug resistance. The result also showed the
model performance is data-specific and that parameter tuning can result in a (slightly) better
performance.
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