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Abstract: In recent advancements in agricultural technology, quantum mechanics and deep learn-
ing integration have shown promising potential to revolutionize rice yield forecasting methods.
This research introduces a novel Hybrid Quantum Deep Learning model that leverages the intricate
processing capabilities of quantum computing combined with the robust pattern recognition prowess
of deep learning algorithms such as Extreme Gradient Boosting (XGBoost) and Bidirectional Long
Short-Term Memory (Bi-LSTM). Bi-LSTM networks are used for temporal feature extraction and
quantum circuits for quantum feature processing. Quantum circuits leverage quantum superposition
and entanglement to enhance data representation by capturing intricate feature interactions. These
enriched quantum features are combined with the temporal features extracted by Bi-LSTM and fed
into an XGBoost regressor. By synthesizing quantum feature processing and classical machine learn-
ing techniques, our model aims to improve prediction accuracy significantly. Based on measurements
of mean square error (MSE), the coefficient of determination (R?), and mean avera ge error (MAE),
the results are 1.191621 x 1075, 0.999929482, and 0.001392724, respectively. This value is so close to
perfect that it helps make essential decisions in global agricultural planning and management.

Keywords: hybrid quantum deep learning; rice production forecasting; quantum feature processing;
quantum machine learning; XGBoost regressor

1. Introduction

Rice is a fundamental staple, nourishing roughly half the global population. It is
crucial for ensuring food security and promoting community well-being, contributing
over 21% to the caloric intake of humans worldwide [1-3]. Therefore, rice production
forecasting is key in supporting strategic planning and decision-making in the agricultural
sector. This process is vital for optimizing resource allocation, stabilizing prices, and
ensuring food availability [4-6]. With precise forecasting, policymakers and stakeholders
can proactively anticipate production needs and market demand dynamics, as well as
be effective in storage management and responding to fluctuations or crises that may
occur. Various factors such as rainfall, temperature, pesticide use, and climate change
affect rice production and are crucial features in the forecasting process [7]. In addition,
genetic factors play a significant role in determining rice traits, as highlighted by studies
identifying quantitative trait loci (QTL) related to germination and seedling growth [8].
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The integration of these diverse datasets enhances the forecasting model’s accuracy and
reliability [Y9,10]. However, the reality is that many developing countries often show
limitations in dataset features, mainly due to the lack of adoption of advanced agricultural
technologies. These limitations demand innovative approaches in feature processing to
produce reliable predictions.

Various methods have been applied in forecasting research efforts, adapting to the
type and quality of available data. Traditional time series analysis methods such as Autore-
gressive Integrated Moving Average (ARIMA) or improved ARIMA, namely SARIMAX,
are useful for extracting trends, cycles, and seasonal patterns from historical data [11-13].
These methods have proven effective in certain scenarios but often fall short when dealing
with highly non-linear and complex data. Regression approaches, whether linear, multiple,
or multivariate, utilize relationships between variables to predict crop yields [14]. While
these methods can provide insights, they often lack the capability to capture intricate
non-linear inherent interactions.

Machine learning techniques have shown great promise in overcoming these limita-
tions. Techniques such as Random Forest, Support Vector Machines (SVM), and neural
networks offer the ability to uncover non-linear relationships and more complex interac-
tions between influential features [12,15-20]. Apart from that, ensemble methods, such
as Extreme Gradient Boosting (XGBoost), have gained popularity due to their ability to
provide accurate and efficient predictions. XGBoost integrates machine learning models in
an ensemble format that improves prediction performance by sequentially strengthening
weak to strong models. The main advantage of XGBoost is its speed in data processing,
which is useful in dealing with large datasets, and its flexibility in handling various types
of data [21-25]. This technique is also known for its superior performance in many Kaggle
competitions, often outperforming other machine learning models.

Furthermore, deep learning methods such as Long Short-Term Memory (LSTM) and
Bidirectional LSTM (BiLSTM) stand out in their ability to learn hidden relations, interaction
complexity, and deep temporal and non-linear pattems [12,26-32]. Additionally, the ability
of deep learning models to double as feature extractors provides significant advantages.
These models analyze data for prediction or classification and automatically extract im-
portant features from structured and even raw data. This process reduces the need for
manual intervention or complex feature engineering techniques because the model can
automatically identify important patterns or characteristics in the data.

While deep learning models can effectively function as regressors or classifiers, often
in practice, they are more commonly used as feature extraction tools, where the resulting
features are then further processed using other machine learning methods. For example,
features extracted by LSTM or BiLSTM can be utilized as input for more traditional re-
gression models such as Support Vector Machines (SVM) [33] or ensemble methods such
as XGBoost, which is known for its robust prediction capabilities [34,35]. Research [14]
also uses transfer learning methods such as EfficientNet and MobileNet for feature extrac-
tion, then classification is carried out using multivariate regression. This hybrid approach
makes it possible to combine the power of deep learning in capturing data complexity with
the efficiency and accuracy of more conventional machine learning algorithms, thereby
providing optimal prediction results.

New approaches that utilize the principles of quantum mechanics—such as superpo-
sition and entanglement—open new insights into data processing. Known as quantum
feature processing, this technique explores broader and more complex data representa-
tions, enriching features with new dimensions inaccessible to classical technologies [36-40].
The benefits of this approach are not only limited to improving the accuracy and speed of
machine learning algorithms but also in their ability to identify hidden patterns that can
significantly improve forecasting results.

Several recent studies propose combining quantum-—classical hybrid methods in vari-
ous fields, especially forecasting, for example, in research [41-45]. A study [41] combined
classical layers and quantum layers in a feedforward neural network (FFN). The use of
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quantum layers enables data processing in higher dimensions, which is effective for com-
plex and chaotic data. This results in richer features that increase the accuracy of solar
radiation predictions. Quantum layers can perform operations that encode and entan-
gle input data into quantum states, allowing the model to explore more complex data
representations than classical layers alone.

Research [42] combines quantum-inspired neural networks with classical deep learn-
ing consisting of Convolutional Neural Networks (CNNs) and LSTM networks. The study
used CNN to extract spatiotemporal features from wind speed data, thereby effectively
capturing spatial patterns. The LSTM network then processes these features to understand
the temporal relationships in the data. This hybrid approach leverages the strengths of both
models to capture complex relationships in wind speed data, thereby improving prediction
accuracy. Similarly, the study in [43] integrated a classical neural network based on the
Keras framework with quantum-inspired optimization techniques to predict supply chain
backorders. By incorporating quantum algorithms for optimization, these models benefit
from the superior search capabilities of quantum computing, which can navigate large
solution spaces more efficiently than classical methods.

In [44], a classical convolutional autoencoder is used for feature extraction, followed
by a quantum regression algorithm to predict the atomization energy. Autoencoders
compress input data into a lower dimensional representation, which is then processed
by a quantum regression algorithm to achieve high prediction accuracy. Study [45] also
uses a hybrid quantum-—classic method in the Hybrid Quantized Elman Neural Network
(HQENN) model. Quantum neurons in the quantum map layer convert the input into
quantum format by phase shift and quantum reversal operations. The results are processed
by classical neurons in the hidden layer and output using the classical sigmoid activation
function. The extended quantum learning algorithm updates the weights of the context
and hidden layers simultaneously, thereby improving forecasting accuracy.

Other research also uses hybrid methods with quantum applications for feature se-
lection [46,47], feature extraction [48], as well as feature optimization and selection [49].
Quantum algorithms can identify the most relevant features in a data set or create new
features that capture important patterns. Quantum feature optimization involves fine-
tuning these features to improve model performance. Thus, the hybrid method positively
influences prediction accuracy, especially for reading features with complex patterns.

A hybrid quantum-—classical approach can improve the model. Quantum computing
excels at handling complex, high-dimensional data through quantum feature processing,
which can reveal complex patterns that classical methods might miss. This capability is
especially useful in dealing with chaotic, non-linear, and multivariate data. So, we develop a
hybrid quantum-—classical machine learning model. This model combines features extracted
using Bi-LSTM with quantum computing technology to enrich feature information. Then,
it uses XGBoost as a regressor algorithm to improve prediction accuracy. So, significant
advantages are obtained in forecasting rice production. This proposed research aims
to develop and validate such a hybrid model, hoping to produce a more sophisticated
forecasting tool to support critical decisions in the global agricultural sector.

The main contributions of this paper are as follows:

Introduction of a novel Hybrid Quantum Deep Learning model for rice yield forecasting.
Demonstrate how quantum feature processing can enhance data representation and
improve prediction accuracy.

e A combination of Bi-LSTM and XGBoost in a hybrid model is needed to leverage the
strengths of both deep learning and ensemble methods.

To provide a clear structure for this paper, we present the organization: Section 2 dis-
cusses the dataset analysis, the hybrid quantum-—classical deep learning model framework,
and the preprocessing steps. Section 3 presents the proposed model’s implementation and
the results of the experiments. Section 4 discusses the results, comparing them with other
models and literature, and performs ablation studies. Finally, Section 5 concludes the paper
and outlines future work.
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2. Materials and Methods
2.1. Dataset Analysis

This research uses a compilation of Food and Agriculture Organization (FAQ) and
World Bank datasets taken from research [1]. Some important features used in this research
from this dataset are area/country, year, production value/crop yield, average rainfall mm
per year (annual rainfall), pesticides, and average temperature. In the first step, dataset
analysis was carried out to ensure that the method selection proposed in this research
was appropriate. First, the relationship between crop yields and factors such as rainfall,
pesticide use, and average temperature was analyzed, as presented in Figure 1.
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Figure 1. Plot the relationship of crop yield features with other features. (a) The relationship
between crop yield and annual rainfall indicates no clear linear pattern, suggesting a complex or
non-linear relationship influenced by other variables. (b) The relationship between crop yield and
pesticide use also shows no strong linear pattern, indicating other factors may play a significant
role. (¢) The relationship between crop yield and average temperature does not show a clear linear
relationship, suggesting temperature influences crop yield in a complex manner.

The dataset used in this research consists of 3270 records from 67 countries. While
this dataset provides significant information, it may not be sufficient to capture all the
variations and complexities present in global rice production. The dataset may have
limitations in terms of feature variety and geographical representation. Some countries
might be underrepresented, affecting the model’s ability to make accurate predictions in
diverse environmental and climatic conditions. Additionally, the dataset may lack certain
features that could further enhance the model’s predictive capabilities, such as soil quality,
irrigation practices, and socio-economic factors influencing agricultural output.

Figure 1a shows the relationship between crop yield and annual rainfall, but it appears
that there is no clear linear pattern. This indicates the relationship may be non-linear or
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influenced by other variables. The plot of the relationship between crop yield and pesticide
use in Figure 1b also does not show a strong linear pattern. Likewise, the plot between crop
yield and average temperature (Figure 1c) also does not show a clear linear relationship,
indicating that temperature may influence crop yield in a more complex way. The complex
interactions between these features require sophisticated models for better understanding,
We also performed temporal feature analysis, as shown in Figure 2.

Long-term Trend of Rice Yield (3-year Moving Average)

100,000

80,000

60,000

Yield (hg/ha)

40,000

20,000

T}l i
WY

\

(1

NN

([

A

Y

v

\\'_

s

|

N
i
b

I

(]

‘I

le

i

J

4y

Y\ \/!
'3

l
(N | [

'i

J\/]
|
IV

UVRE N

T

W
T
i

AN

I
\

E‘
!\h"ﬂ'ﬂi’

L 1

]
|
\

'!'iliM‘.'lk‘

il

i\
I\
|

0
|

VRN
i| }! Ili !‘

W

il

Vil

)

AN
/7 Lk

/

——1

T
1980

teeddddtdtddats

T
2000

2005
Albania —&— Colombia ~#— India —&— Mauritius —8— Senegal
Algeria —&— Dominican Republic  —®— Indonesia —8— Mexico —8— South Africa
Angola —®— Ecuador —— Iraq —&— Morocco —®— Spain
Argentina —o— Egypt - ltaly —&— Mozambique —®— Sri Lanka
Australia —o— El Salvador —— Jamaica —8— Nepal —&— Sudan
Azerbaijan —o— France —e— Japan —#— Nicaragua —&— Suriname
Bangladesh —o— Ghana —@— Kazakhstan —&— Niger —&— Tajikistan
Brazil —o— Greece —o— Kenya —&— Pakistan —&— Thailand
Bulgaria —o— Guatemala —e— Madagascar —®— Papua New Guinea —e— Uganda
Burkina Faso —e— Guinea —e— Malawi —e— Peru —e— Ukraine
Burundi —e— Guyana —a— Malaysia —eo— Portugal —o— Uruguay
Cameroon —e— Haiti -~ Mali —e— Romania —e— Zambia
Central African Republic ~ —e— Honduras —e— Mauritania —e— Rwanda —e— Zimbabwe
Chile —8— Hungary

Figure 2. Temporal feature analysis plot using a three-year moving average.

Temporal feature analysis reveals that rice yields significantly vary over time between

countries and from year to year. In addition, there appear to be non-smooth fluctuations
and trends based on moving averages in several countries, especially Mauritius, Alba-
nia, Romania, Azerbaijan, Rwanda, and Kenya. This variation could indicate that deep
learning models are more appropriate because they are more sophisticated for understand-
ing and predicting crop yields more accurately, especially if we want to make accurate
predictions [26].

Lastly, we also analyzed the correlation between features using the heatmap presented
in Figure 3. The values in the heatmap represent the Pearson correlation coefficient between
pairs of variables. This value ranges from —1 to 1, where a value close to 1 indicates a
strong positive correlation, a value close to —1 indicates a strong negative correlation and
a value close to 0 indicates no correlation. From this heatmap, several important things
can be concluded, such as (1) a negative correlation between pesticide use and crop yields,
which may indicate that higher pesticide use does not always correlate with increased
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yields. Pesticides are important in controlling pests and diseases in plants [50]. (2) Average
temperature has a relatively strong negative correlation with crop yield, indicating that
higher temperatures may not be favorable for rice production. (3) There is no strong
correlation between rainfall and crop yield according to these data, indicating that factors
other than rainfall may be more significant in determining crop yield because there is no
strong correlation between observed variables and crop yields, as well as indications of
non-linearity and the importance of temporal factors, a deep learning model approach with
a combination of quantum feature analysis is undoubtedly appropriate to capture more
complex dynamics.

Heatmap of Feature Correlations
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Figure 3. Heatmap plot feature analysis.

2.2. Framework of Hybrid Quantum—Classical Deep Learning Model

After the analysis stage, this research designed a prediction model generally illustrated
in Figure 4. The data input and analysis section has been discussed in Section 2.1. Further-
more, a more detailed explanation of the global framework is presented in Sections 2.3-2.8.
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Figure 4. Framework of hybrid quantum-—classical deep learning model.

2.3. Preprocessing, Normalization, and One Hot Encoding

After carrying out an analysis to ensure that the method chosen is appropriate. Some
preprocessing was completed on the dataset used, such as checking and removing missing
values and duplicate data, then normalizing and one-hot encoding. In this case, the
normalization technique used is minimax to scale numerical features from 0 to 1. The goal
is to ensure that the features are on the same scale so that no feature dominates the others
during the model training process. This is important because machine learning algorithms
can often converge more quickly when features are at the same scale. Equation (1) is used
to perform MinMax normalization.

y = o minld) M)
max(x) — min(x)
where ¥’ MinMax normalized value of feature value x; min(x) is the minimum value of
that feature in the entire dataset, while max(x) is the maximum value of that feature in the
entire dataset.

One-hot encoding is a technique used to convert categorical variables into a format
that machine learning algorithms can understand [51]. This is important because many
machine learning algorithms cannot handle category labels directly because they can only
work with numeric values. One-hot encoding helps overcome this problem by creating
a binary numeric representation. In this case, one-hot encoding converts the area as a
categorical variable.

2.4. Deep Learning Feature Extractor Model Design
This model uses an effective Bidirectional Long Short-Term Memory (BiLSTM) archi-

tecture to learn long-term dependencies in data. BiLSTM utilizes information from both
time directions in sequential data. It has four layers consisting of three BILSTM layers and
one dense layer. The BILSTM layer with return_sequences = True allows information to
flow to the next LSTM layer. In contrast, the final layer with return_sequences = False
consolidates the information into a single output vector that is then processed by the Dense
layer to produce the final prediction. The Adam optimizer was chosen for efficiency in
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training, and evaluation was performed using standard metrics for regression problems.
Training is carried out using cross-validation to ensure a robust model and avoid overfitting.
More detailed designs are presented in Table 1.

Table 1. Proposed deep regression model details.

Configurations Values
Total layer Three layers BILSTM + one layer dense for output
Number of units per BILSTM layer 50 units x two directions
Return sequences True for the first two layers 2, false for the last layer
Activation function Leaky ReL.U
Optimizer Adam
Cost function Mean squared error (MSE)
Epochs 100
Batch Size 32

A more detailed explanation of the specifications of the model. Multiple BILSTM lay-
ers allow the model to learn more complex and abstract data representations. Each BiLSTM
layer can extract and reconstruct information from sequential features at different levels,
allowing the model to learn deeper time dependencies and more complex patterns. Choos-
ing the number of layers has several impacts. If the number of layers is less, it can lead to
underfitting, poor generalization, and limited performance on complex data. Conversely, if
there are too many, it can also cause overfitting and high computational requirements, and
problems with back-propagated gradients can disappear or even explode. The selection of
the number of layers was determined based on several experiments and observations, as
well as the selection of the number of units in each layer.

A dense layer, also known as a fully connected layer, is one in which every unit is
connected to every unit in the previous layer. This layer is usually used as an output layer
in a neural network to combine the features extracted by previous layers and produce a
final prediction. In the context of regression, the dense layer typically has one unit (neuron)
to produce one continuous value representing the prediction.

The Leaky ReLU activation function is a variation of ReLU designed to overcome the
vanishing gradient problem that can occur on inactive ReLU units. In contrast to ReLU,
whose output is 0 for all negative inputs, Leaky ReLU allows small values for negative
inputs, thereby reducing the risk of the ReLU unit becoming permanently inactive. Leaky
ReLU canbe calculated with Equation (2).

. [xifx>0
flx) = {rxx ifx <0 @

where a is a small leakage constant, generally in the range of 0.01. This ensures that even
when the unit is inactive, a small gradient still passes through, which helps in the learning
process during backpropagation.

The optimization algorithm chosen is Adaptive Moment Estimation (Adam). This is
useful for updating network weights iteratively based on training data. Adam combines
the advantages of the Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square
Propagation (RMSProp). Adam calculates adaptive learning rates for each parameter.
Adam also stores estimates of the gradient’s first (mean) and second gradients (variance);
This helps set the learning rate and makes it suitable for problems with many parameters
or large data.

The cost function measures how well the model makes predictions compared to reality.
Mean squared error (MSE) is one of the most commonly used cost functions for regression
problems. The MSE measures the average of the squares of the errors between the predicted
values and the actual values. The MSE formula can be calculated with Equation (3).

MSE — % ): (vi—9:)° 3)

i=1
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where y; is actual value, 1}; is the predicted value, and # is the number of samples.

2.5. Quantum Circuit Design and Quantum Feature Processing

Integration with quantum circuits in this research is needed to overcome the limitations
of classical feature selection techniques, which are often trapped in local optima and have
difficulty handling combinatorial optimization problems in large feature spaces. Quantum
circuits, with their ability to exploit superposition and entanglement, can simultaneously
explore a broader and more complex solution space. This allows data processing in
higher dimensions and can capture more complex and non-linear data patterns, which
are difficult to achieve with classical techniques. Using quantum simulators such as
PennyLane allows us to test and optimize quantum algorithms on classical hardware before
implementing them on real quantum devices, ensuring the feasibility and efficiency of the
proposed method.

However, it is important to note that designing the architecture of quantum circuits
requires deep hypotheses and multiple trials and errors. An inappropriate quantum
architecture may not provide a positive impact; on the contrary, it may increase excessive
complexity, reduce the richness of feature representation, and thereby decrease prediction
performance. For example, while quantum entanglement can enhance feature interactions,
poorly designed entanglement patterns can introduce noise and irrelevant correlations
that confuse the model. Similarly, the depth of the quantum circuit must be carefully
balanced; too shallow a circuit might fail to capture necessary feature interactions, while
too deep a circuit might suffer from issues like decoherence and increased computational
burden [52-54].

Quantum circuits are invoked for each piece of data to process each sample. These
circuits take classical parameters and features as input, encode the classical features into
quantum states (qubits), and then apply a series of quantum operations (rotation and
entanglement) before performing measurements (converting back to the classical state).
Rotation and entanglement in quantum computing play a key role in manipulating qubit
states to extract patterns or information that are not easily obtained through classical
computing. Rotation enables exploration of the entire Bloch state space, encoding richer
information into qubit states. By exploiting rotation, classical features can be encoded
into the amplitude and phase of quantum states, which allows us to exploit quantum
superposition to capture simultaneous combinations of features [55]. Circuits are also built
with parameter tuning to find classical data’s most effective quantum representation.

Meanwhile, entanglement is a quantum phenomenon in which the state of one quan-
tum particle cannot be explained independently of the state of another particle, even if
a large distance separates the particles. In quantum machine learning, this allows us to
capture correlations between features that classical models cannot [37]. Through entan-
glement, we can create new “quantum features” that combine information from several
original features in a non-linear and highly complex manner [56]. When measuring a qubit
after rotation and entanglement have been applied, information is obtained that represents
the combined influence of all classical features and the non-linear correlations between
them that have been “mapped” to quantum space.

The quantum circuit is built with the PennyLane simulator, where the general design
of the quantum circuit used is presented in Figure 5. Based on Figure 5, you can see the
details of the process in the designed quantum circuit, namely:

1.  State Preparation: Start by encoding classical features into quantum states (qubits)
using RY gates. RY is a gate for rotation around the y-axis on the Bloch sphere. The RY
gate has a parameter 8 (RY(0)), which rotates the state by an angle 6 about the y-axis.

2. First Layer Rotation and Entanglement: Perform rotation on each qubit using the Rot
gate. The Rot gate has three parameters, namely ¢, 8, w (Rot(¢, 6, w)). This gate is a
general rotation and can be described as rotation around the z (¢), y (#), and again z
(w) on the Bloch sphere. Next, entanglement is applied between neighboring qubits




Computers 2024, 13,191

100f18

using a CNOT gate and another CNOT to create an entanglement loop from the last
qubit to the first qubit.

3. Second Layer Rotation and Entanglement: Performs another series of rotations on
each qubit with the Rot gate. Then, different entanglement patterns will be created
using CZ gates on paired qubits. The CZ gate is similar to CNOT, but the CZ gate will
add a 7 phase at the |11) state. In simpler terms, if both qubits are in the |1) state,
and then the target qubit’s state will be multiplied by —1.

4. Measurements: Pauli-Z value expectation-based measurements were performed,
which is one of the standard basis sets for quantum measurements. The measurement
results are usually expressed as +1 and —1, which correlate with the |1) or |0) state
of each qubit. The results at this stage are that quantum information is converted
again into classical information that classical machine learning models can use to
make predictions.
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Figure 5. Quantum circuit design for feature processing.

The use of quantum circuits provides significant advantages by exploiting quantum
phenomena to process data in ways that classical methods cannot. This can be called a
feature engineering process on the BILSTM extracted features, which enriches the represen-
tation [57]. This has the positive impact of improved prediction accuracy, demonstrating
the potential of quantum-enhanced machine leaming models in handling complex high-
dimensional data sets.

2.6. Concatenate Features and Reshaping

The resulting quantum features are then combined with classical features. This means
that the representation of each sample now includes both classical and quantum informa-
tion. The combined feature data are transformed to match the input expected by the LSTM
model. LSTM expects data in the format [samples, time steps, features], so changes are
made to conform to this structure.

The combined feature data are transformed to match the input expected by the LSTM
model. LSTM expects data in the format [samples, time steps, features], so changes are
made to conform to this structure. Combining quantum and classical features leverages the
strengths of both approaches. Quantum features capture intricate, non-linear relationships
that are difficult for classical models to detect, while BILSTM excels at understanding
temporal dependencies. The enriched feature set is then used to train the XGBoost model,
which benefits from the enhanced representation of the data, leading to improved predic-
tion accuracy.

2.7. Train and Validation Using XGBoost Regressor

The data are divided into training and testing sets in the loop using 5-fold cross-
validation. This is important for validating the model and ensuring that the model can
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generalize well to data that has never been seen before. In this phase, the XGBoost model
is defined and configured by optimizing a number of critical hyperparameters and se-
lected n_estimators = 150 to build the ensemble model, which collectively contributes to
the predictive power. The choice of the number of trees considers the balance between
maodel capacity and the potential for overfitting, considering the volume and complexity
of the data being processed. Meanwhile, the learning_rate was set at 0.05 to facilitate
gradual and stable convergence to the minimum loss function. These hyperparameters
are critical in moderating the rate of model adaptation to prediction errors during the
training phase, allowing for increased precision without compromising on model gener-
alization. This implementation assumes an iterative process in which model weights are
systematically adjusted, absorbing information from features extracted via BILSTM and
quantum processing, to obtain an optimal regression model in the context of the dataset
under consideration.

2.8. Model Evaluation

After training, the model is evaluated using metrics such as MSE, R2, and mean
absolute error (MAE) to measure model performance on test data. MSE can be used to
measure cost functions and performance measurement tools. The MSE formula for model
evaluation is also the same as the cost function shown in Equation (3). MSE measures
model performance by calculating the average squared error between model predictions
and actual values. This provides a measure of the model’s effectiveness in predicting
new data. Meanwhile, R? is helpful for comparing how effective a predictive model is
in explaining variations in data compared to a straightforward model that only uses the
average of the data as a prediction. A higher R? value (closer to 1) indicates that the model
performs better. R? can be calculated with Equation (4).

RZ_1_ im1(yi — 9’5}2

(4)
i (i — gf}Q

where ¥ is a mean value of y;.

MAE is often used to obtain an illustration of the average “error” created by a model,
where all errors are calculated on the same scale, and no error is dominant over another.
MAE gives anidea of the magnitude of error in predictions without considering its direction
(positive or negative). The MAE value is calculated using Equation (5).

1 M
MAE:;ZM—?&\ (5)
i=1

The combination of these three measuring instruments is important to use because it
provides a detailed explanation. Low MAE and MSE indicate low prediction error, which
usually means more accurate predictions. A high R? indicates that your model can explain
variations in the data better, often meaning more precise predictions. MAE is more robust
against outliers than MSE because it does not square the different results. So, a model with
a low MAE may not always have a low MSE if there are outliers in the data, while R?is
useful for assessing the overall model fit to the targeted data.

3. Resulis

This research was implemented using Python, Pennylane Quantum Simulator, and
Google Collab Pro, while the local hardware used was a personal computer with an Intel
Core i7-1165G7 11th Gen CPU with 16 GB memory. Regarding dataset collection and
initial analysis are explained in Section 2.1, and the implementation results of the proposed
framework are presented in more detail in the following section. In the first stage of data
set reading and preprocessing, Figure 6 shows the sample data set used.
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Figure 6. Sample dataset after one-hot encoding.

Based on Figure 6, it appears that the records in the dataset are not all unique and
complete. There are 297 records of duplicate data or missing values, which were calculated
from initial data of 3270 (see Table 2) and reduced to 2973 (see Table 3). Removing duplicate
and missing values in data preprocessing aims to improve the dataset’s quality. Duplicate
values can cause bias in the model by repeating the same information while missing values
can hinder algorithms that require a complete dataset to operate effectively. By eliminating
both, we can reduce the risk of overfitting, ensure the integrity of the analysis, and sim-
plify the training process, resulting in more accurate and reliable models [58]. Next, the
normalization stage is carried out on all numerical values. The normalization process is
carried out before the one-hot encoding process (see Table 4). Normalization before one-hot
encoding is preferred because it ensures that only numerical features that scale differently
are adjusted, while categorical features transformed via one-hot encoding remain in the
desired binary format. Encoded categorical features should not be normalized because they
inherently contain values 0 or 1, reflecting the absence or presence of categories. Additional
normalization could distort the meaning of this binary and reduce the clarity of model
interpretation. Separating the normalization and one-hot encoding processes can ensure
that the data are processed appropriately and improve the scale of numerical features
without disturbing the correct representation of categorical features [59—-61]. The results of
the one-hot encoding process are presented in Figure 6.

Table 2. Example of the top five records from the raw dataset.

Average Rainfall Pesticides

Domain Code Domain Area Year hg/ha_yield mm_per_year Tonnes Avg_ temp
QCL Crops and livestock products Albania 1990 23,333 1485 121.00 16.37
QCL Crops and livestock products Albania 1991 28,538 1485 121.00 15.36
QCL Crops and livestock products Albania 1992 40,000 1485 121.00 16.06
QCL Crops and livestock products Albania 1993 41,786 1485 121.00 16.05
QCL Crops and livestock products Algeria 1990 28,000 By 1828.92 17.48

Number of records raw dataset 3270

Table 3. Example of the top five records from the dataset after deleting duplicate and missing values.

Domain Code Domain Area Year hg/ha_yield Average Rainfall Pesticides Avg temp
mm_per_year Tonnes

QCL Crops and livestock products Albania 1990 23,333 1485 121.00 16.37
QCL Crops and livestock products Albania 1991 28,538 1485 121.00 15.36
QCL Crops and livestock products Albania 1992 40,000 1485 121.00 16.06
QCL Crops and livestock products Albania 1993 41,786 1485 121.00 16.05
QCL Crops and livestock products Algeria 1990 28,000 89 1828.92 17.48

Number of records after deleting duplicate and missing values 2973

One-hot encoding is used to change the “Area” column of the sample dataset shown
in Figure 6, which becomes a series of binary columns, each representing one country.
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This process removes categorical values and replaces them with numeric values, where
eachnew column added will have a value of 1 for the row corresponding to that country and
0 for all other countries. As a result, each entry in the dataset that previously represented a
country by name is now represented by a unique binary pattern, allowing machine learning
algorithms to process the data without ordinal bias and increasing the total number of
features according to the number of unique countries present in the data.

Table 4. Example of the top five records from the dataset after normalization.

Average Rainfall Pesticides

Domain Code Domain Area Year hg/ha_yield mm_per_year Tonnes Avg temp
QCL Crops and livestock products Albania 0.000000 0.209099 0449671 0.000329 0.508264
QCL Crops and livestock products Albania 0.043478 0.260198 0449671 0.000329 0.473485
QCL Crops and livestock products Albania  0.085957 0372724 0449671 0.000329 0.497590
QCL Crops and livestock products Albania  0.130435 0.390257 0449671 0.000329 0.497245
QCL Crops and livestock products Algeria 0.000000 0254916 0011916 0.004973 0.546488

Number of records after normalization 2973

After the preprocessing stage is complete, the training and validation process is carried
out in k-fold cross-validation, where k = 5. In 5-fold cross-validation, the dataset is divided
into five folds. At each iteration, one-fold is used as the validation set, and the other four
are used as the training set. The model is trained on the training set and evaluated on the
test set. This process is repeated five times so that each fold has one chance to become a test
set. The training and validation results are then measured using MSE, RZ and MAE, where
the average values of these three measuring instruments are presented in Table 2. Apart
from that, a plot of the regression results is also presented, which is presented in Figure 7.

Prediction Accuracy

1.04 @ Predictions vs. Actual

0.8 4 L]

Predictions
o
o

e
B

0.2 4

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0
Actual Values

Figure 7. Scatter plot of proposed regression model results.

The plot presented in Figure 7 displays all predictions of each fold against the actual
value. At each cross-validation iteration, the model makes a series of predictions for the
fold being tested, and these predictions are collected together in the “predictions variable”.
In contrast, the actual value of the fold is collected in the “actuals variable”. The blue dots
in the scatter plot show the relationship between predicted and actual values for all folds.
Each point represents the model prediction for one sample in the test set. The dashed red
line shows the identity line, where the perfect predicted value would lie. If all predictions
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are perfect, all points will lie on that line, and it seems that the plot results show that the
blue points are around that line, indicating something very positive about the prediction
results. The results of this plot are also supported by the MSE and MAE, and R? results are
shown in Table 5.

Table 5. Proposed deep regression model results.

Folds MSE R? MAE
1st 1.191369 x 107° 0.999913822 0.001698516
nd 1.195369 % 10°° 0.999935455 0.001207849
3rd 1.186369 x 1073 0.999943874 0.001142678
4th 1.196566 x 107° 0.999890378 0.001091229
Sth 1.188435 % 1077 0.999963879 0.001823347

Average 1.191621 % 10-53 0999929482 0.001392724

4. Discussion

Based on the data displayed in the results section, it appears that the proposed model
can perform sophisticated work and predict the expected results. The results are also
relatively stable, as seen by looking at the very low MSE and MAE figures in each validation
fold. The R2 value is also very high, approaching 1, meaning that this result can tell how
well the model can “explain” the variations that occur in the data used. This is very
important because perfect data are rarely obtained in the real world. In this way, this
model can produce the expected predictions and not be far from reality. However, the
results above also need further analysis. In this section, the results are compared with other
popular models, while several ablation studies are carried out to determine the effects of
using hybrid quantum—classical features. The comparison results are presented in Table 6.

Table 6. Comparison regression results with other models.

BiLSTM Features Quantum Features Hybrid Features
MSE Rr? MAE MSE Rr? MAE MSE R? MAE

Regressor

SVM 001423 066812 010419 001416  0.68890  0.10419  0.01422 069813 0.10437
LSTM 000083 096221 000921 000085 096924  0.00703  0.00043 098178 0.00591
BILSTM 000075 096935 00083  0.00069 097755  0.00689  0.00038 098653 0.00507

XGBoost 000021 099285 000421 V% 099968 000261 1% 099993 000139

The data in Table 3 contains several important findings. Firstly, the use of hybrid
features has succeeded in increasing the performance of all methods. Quantum circuits
have the potential to explore complex and high-dimensional feature spaces more efficiently
than classical methods. This can lead to the discovery of novel feature interactions and
patterns that might be overlooked by classical models. The use of several layers of rotation
and entanglement enriches the viewpoint from which to study the recognition of hidden
relations, interaction complexity, and deep temporal and non-linear patterns in features
that have been extracted with BiLSTM. Secondly, XGBoost methods, which are ensemble
methods, are still more robust than the deep learning regressor implementation.

Apart from that there are several main justifications that need to be considered.
The first is future scalability, where the computing power of quantum processors is expected
to far exceed classical processors. Investing in quantum-based methods today can provide
a foundation for taking advantage of future advances. Secondly, integrating quantum
computing with machine learning represents a cutting-edge approach that pushes the
boundaries of traditional computing methods into an interdisciplinary innovation.

Next, we also compared several models in the literature related to rice production
prediction, which are presented in Table 7.
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Table 7. Comparison with related literature.
Method MSE R? MAE Area Dataset
Ref. [19] - 0.9503 0.160 9 countries FAO + World Bank
Ref. [5] 0.004715 0.940333 - 3 districts eands.da.govin (accessed on 1 May 2024)
Ref. [20] 434,503,665 - 11 ,469.55 1 country psa.gov.ph (accessed on 1 May 2024)
Ref. [1] 9. 6588 0499 28108 67 countries FAQ + World Bank

Proposed 12x10° 099993 0.00139 67 countries FAQ + World Bank

Based on the results presented in Table 4, the proposed method shows the best per-
formance in predicting rice production. This method uses quantum features that provide
significant advantages in increasing prediction accuracy, which is reflected in very low MSE
and MAE values and is almost perfect R% Compared with other methods, such as those
used in research in Ref. [19] and Ref. [1], which also show good results but are still inferior
in terms of accuracy and prediction error. Ref. [5] uses data from three districts in India and
shows quite good R?, but with higher MSE, indicating lower accuracy. Meanwhile, Ref. [20]
shows much lower performance with high MSE and MAE values.

The MSE measures the mean squared difference between predicted values and actual
values. In the context of forecasting, a lower MSE indicates that the model predictions
are closer to the actual values, thereby giving more weight to larger errors. The proposed
method’s MSE of 1.2 x 10~ is significantly lower than the MSE values reported in Ref. [5]
and Ref. [20], indicating that our model makes more precise predictions with smaller
deviations from the actual values. MAE measures the average absolute difference between
predicted values and actual values. In contrast to MSE, MAE provides a direct average
error in the same units as the data, making it easier to interpret. The MAE of the proposed
method is 0.00139, which is much lower than the MAE values in related studies, such as
Ref. [19] and Ref. [20], indicating that our model consistently produces predictions that
are very close to the true values. R? shows how well the model explains the variance of
the data. An R? value close to 1 indicates that the model can account for almost all of the
variability in the data. The proposed method obtains R? of 0.99993, which is higher than
the values reported in Ref. [19] and Ref. [5], indicating that our model fits the data better.

The combination of these three metrics, MSE, MAE, and R? is very important for the
comprehensive evaluation of model performance. MSE and MAE assess the accuracy of
predictions by measuring the magnitude of the error while R? evaluates the explanatory
power of the model. Optimal values on all these metrics indicate that the model is not
only accurate in its predictions but also robust in capturing underlying patterns in the
data. This comprehensive performance analysis underscores the superiority of the pro-
posed hybrid quantum-—classical model in providing accurate and reliable rice production
estimates compared to traditional methods and other related efforts. Overall, the hybrid
quantum-—classical method proposed in this research is proven superior in providing more
accurate and reliable rice production predictions. This is very important for practical appli-
cations where accurate forecasting is essential for agricultural planning and management
decision-making.

5. Conclusions

This research succeeded in developing a hybrid quantum deep learning model for
rice production forecasting, which shows great potential for increasing prediction accuracy
compared to traditional methods. This model integrates the advantages of quantum feature
processing with advanced deep learning techniques such as BiLSTM and XGBoost regres-
sors, providing a robust solution that can handle the large, non-linear, and multivariate
data complexities often encountered in agricultural data.

The results of this study show that: (1) the use of quantum features helps in revealing
hidden patterns and improves the quality of data representation, which significantly
enriches the information available for prediction; (2) the integration of features from
BiLSTM and quantum computing in the hybrid model provides significant improvements
in all evaluation metrics—mean squared error (MSE), coefficient of determination (Rz),
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and mean absolute error (MAE), demonstrating the effectiveness of this combination in
predicting rice yields; (3) hybrid quantum deep learning models offer superior flexibility
and adaptability in dealing with variations in agricultural data, which is promising for
applications in real-world scenarios.

However, there are several cons related to the current state of quantum technology
and deep learning: (1) Quantum computing hardware is still in its infancy. This restricts
the practical implementation of quantum algorithms and necessitates using quantum
simulators, which may not fully capture the potential of real quantum processors. (2) Both
quantum simulations and deep learning models require significant computational resources.
(3) Scaling quantum algorithms to handle larger datasets and more complex problems is
still a major challenge. Despite these challenges, the future of quantum computing holds
immense promise. As quantum hardware advances and becomes more accessible, it is
expected to surpass classical processors, enabling the exploration of complex feature spaces
and the discovery of novel patterns.

By leveraging quantum technology and deep learning, this research opens new av-
enues in agronomic forecasting and can be considered a step forward in Al applications in
the agricultural sector. Therefore, we recommend wider adoption of this hybrid approach
in future similar studies, as well as further exploration of the potential of quantum tech-
nology in various aspects of machine learning. We hope these findings can inspire other
researchers to explore and develop this technology further so that globally, decisions in
the agricultural sector can be further optimized, helping to increase food production and
environmental sustainability.
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