BUKTI KORESPONDENSI ARTIKEL JURNAL INTERNASIONAL BEREPUTASI

Judul Artikel : FeistelX network-based image encryption leveraging hyperchaotic

fusion and extended DNA coding

Nama Jurnal : Egyptian Informatics Journal

Publhiser : Elsevier

Quarttile Scopus : Q1

SJR : 1.1050

Penulis Korespondensi : De Rosal Ignatius Moses Setiadi

No	Kegiatan	Tanggal	Halaman
1	Submission to Egyptian Informatics	5 Oktober 2024	2
	Journal		
2	Track the status of submission	8 Oktober 2024	3
3	Decesion to revised paper	19 April 2025	4
4	Revision & Modification	20 April 2025	5
5	Turnitin (Plagiarism Checked)	28 April 2025	7
6	Confirming Submission	28 April 2025	8
7	Decession of Submission (Accepted)	14 Juni 2025	9
8	Proofread by Elsevier	14 Juni 2025	10
9	Full Published (Volume 31, September	1 September 2025	11
	2025))		

1. Submission to Egyptian Informatics Journal

Submission to Egyptian Informatics Journal - manuscript number

Egyptian Informatics Journal <em@editorialmanager.com>
Reply-To: Egyptian Informatics Journal <support@elsevier.com>
To: De Rosal Ignatius Moses Setiadi <moses@dsn.dinus.ac.id>

Sat, Oct 5, 2024 at 6:08 PM

This is an automated message.

Manuscript Number: EG|J-D-24-00766

FeistelX Network-Based Image Encryption Leveraging Hyperchaotic Fusion and Extended DNA Coding

Dear Mr. Setiadi.

Your above referenced submission has been assigned a manuscript number: EGIJ-D-24-00766,

To track the status of your manuscript, please log in as an author at https://www.editorialmanager.com/egij/, and navigate to the "Submissions Being Processed" folder.

Thank you for submitting your work to this journal.

Kind regards,

Egyptian Informatics Journal

More information and support

You will find information relevant for you as an author on Elsevier's Author Hub: https://www.elsevier.com/authors

FAQ: How can I reset a forgotten password?

https://service.elsevier.com/app/answers/detail/a_id/28452/supporthub/publishing/

For further assistance, please visit our customer service site: https://service.elsevier.com/app/home/supporthub/publishing/

Here you can search for solutions on a range of topics, find answers to frequently asked questions, and learn more about Editorial Manager via interactive tutorials. You can also talk 24/7 to our customer support team by phone and 24/7 by live chat and email

#AU EGIJ#

To ensure this email reaches the intended recipient, please do not delete the above code

In compliance with data protection regulations, you may request that we remove your personal registration details at any time. (Use the following URL: https://www.editorialmanager.com/egij/login.asp?a=r). Please contact the publication office if you have any questions.

2. Track the status of submission

Track the status of your submission to Egyptian Informatics Journal

Track your Elsevier submission <no-reply@submissions.elsevier.com>
To: moses@dsn,dinus.ac.id

Tue, Oct 8, 2024 at 9:51 AM

Manuscript Number: EGIJ-D-24-00766

Manuscript Title: FeistelX Network-Based Image Encryption Leveraging Hyperchaotic Fusion and Extended DNA Coding

Journal: Egyptian Informatics Journal

Dear De Rosal Ignatius Moses Setiadi,

Your submitted manuscript is currently under review. You can track the status of your submission in Editorial Manager, or track the review status in more detail using Track your submission here: https://track,authorhub,elsevier.com?uuid=e6e1b5cd-3639-4417-a4ca-da37d0a14291

This page will remain active until the peer review process for your submission is completed. You can visit the page whenever you like to check the progress of your submission. The page does not require a login, so you can also share the link with your co-authors.

If you are a WeChat user, then you can also receive status updates via WeChat. To do this please click the following link; you will be taken to Elsevier China's website where further instructions will guide you on how to give permission to have your submission's details made visible in WeChat. Note that by clicking the link no submission data is transferred to the WeChat platform. If you have any questions about using Track your submission with WeChat please visit 在线咨询 https://cn.service.elsevier.com/app/chat/chat_launch/supporthub/publishing/session/ - Journal Article Publishing 支持中心

https://webapps.elsevier.cn/st-wechat/subscribe?signature=1728355243-98036a55de5f85db1133ac32a9b8b1ec&uuid=e6e1b5cd-3639-4417-a4ca-da37d0a14291

We hope you find this service useful.

Kind regards, Journal Office of Egyptian Informatics Journal Elsevier B.V.

3. Decission to Revised Paper

Decision on submission to Egyptian Informatics Journal

Egyptian Informatics Journal <em@editorialmanager.com>
Reply-To: Egyptian Informatics Journal <support@elsevier.com>
To: De Rosal Ignatius Moses Setiadi <moses@dsn.dinus.ac.id>

Sat, Apr 19, 2025 at 10:09 PM

Manuscript Number: EGIJ-D-24-00766

FeistelX Network-Based Image Encryption Leveraging Hyperchaotic Fusion and Extended DNA Coding

Dear Mr. Setiadi,

Thank you for submitting your manuscript to Egyptian Informatics Journal.

I have completed my evaluation of your manuscript, The reviewers recommend reconsideration of your manuscript following minor revision and modification. I invite you to resubmit your manuscript after addressing the comments below. Please resubmit your revised manuscript by May 19, 2025.

When revising your manuscript, please consider all issues mentioned in the reviewers' comments carefully: please outline every change made in response to their comments and provide suitable rebuttals for any comments not addressed. Please note that your revised submission may need to be re-reviewed.

To submit your revised manuscript, please log in as an author at https://www.editorialmanager.com/egij/, and navigate to the "Submissions Needing Revision" folder under the Author Main Menu.

Research Elements (optional)

This journal encourages you to share research objects – including your raw data, methods, protocols, software, hardware and more — which support your original research article in a Research Elements journal. Research Elements are open access, multidisciplinary, peer-reviewed journals which make the objects associated with your research more discoverable, trustworthy and promote replicability and reproducibility. As open access journals, there may be an Article Publishing Charge if your paper is accepted for publication. Find out more about the Research Elements journals at https://www.elsevier.com/authors/tools-and-resources/research-elements-journals?dgcid=ec_em_research_elements_email.

Egyptian Informatics Journal values your contribution and I look forward to receiving your revised manuscript. 39

Kind regards,

Reda El-Khoribi

Editor-in-Chief

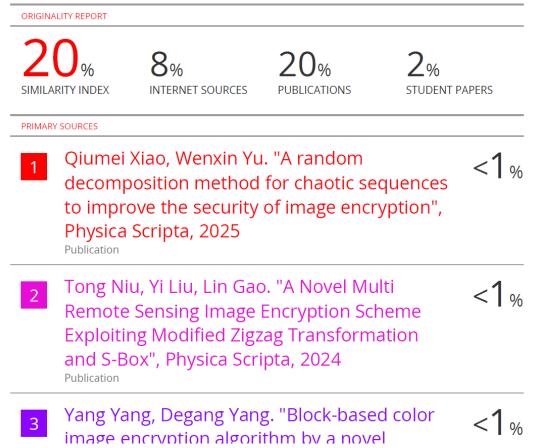
Egyptian Informatics Journal

Editor and Reviewer comments:

4. Revision & Modification

Egyptian Informatics Journal

FeistelX Network-Based Image Encryption Leveraging Hyperchaotic Fusion and Extended DNA Coding --Manuscript Draft--


Chaotic Sequence; DNA Cryptography; Feistel Network; Hyperchaotic Encryption; Image Security De Rosal Ignatius Moses Setiadi Universitas Dian Nuswantoro Semarang, Central Java INDONESIA Kristiawan Nugroho, Dr Corder of Authors: Kristiawan Nugroho, Dr De Rosal Ignatius Moses Setiadi, Dr Eri Zuliarso, Dr Aceng Sambas, Dr Omar Farooq, Prof. The rising frequency of cyberattacks has heightened the need for more secure and efficient image encryption techniques. Traditional chaotic and DNA-based methods often struggle with limited key space, low diffusion efficiency, or vulnerability to statistical attacks, especially when handling large or high-dimensional image data. This study introduces an image encryption technique that integrates the FeistelX Network with extended DNA cryptography and two distinct two-dimensional hyperchaotic maps, namely the two-dimensional symbolic chaotic map (2D-HELS), to bolster data security. The proposed method synergizes three key components: the FeistelX Network offers a robust encryption framework with bjectivity ensured by property H; the extended DNA cryptography expands the key space and minimizes pixel correlation through advanced DNA operations; and the hyperchaotic maps generate highly intricate chaotic sequences, ensuring greater randomness and resilience. Compared to existing schemes, the proposed method demonstrates improved diffusion, randomness, and resistance to statistical attacks. Experimental results show that this method achieves high-security indicators, with Chi-square values consistently below the critical threshold, average entropy values of 7.9994, and UACI and NPCR metrics remaining within the optimal theoretical ranges. Moreover, the method passed all sixteen NIST randomness tests with an average p-value of 0.6278. It demonstrated resilience to noise and data loss with PSNR values above 18 dB under attack scenarios. This combination of FeistelX Structure, extended DNA operations, and dual hyperchaotic maps offers a novel and effective solution for enhanc	Manuscript Number:	EGIJ-D-24-00766R1
Image Security De Rosal Ignatius Moses Setiadi Universitas Dian Nuswantoro Semarang, Central Javai INDONESIA First Author: Kristiawan Nugroho, Dr De Rosal Ignatius Moses Setiadi, Dr Eri Zuliarso, Dr Aceng Sambas, Dr Omar Farooq, Prof. The rising frequency of cyberattacks has heightened the need for more secure and efficient image encryption techniques. Traditional chaotic and DNA-based methods often struggle with limited key space, low diffusion efficiency, or vulnerability to statistical attacks, especially when handling large or high-dimensional image data. This study introduces an image encryption technique that integrates the FeistelX Network with extended DNA cryptography and two distinct two-dimensional hyperchaotic maps, namely the two-dimensional synboric chaotic map (2D-SCM) and the two-dimensional hyperchaotic exponential adjusted Logistic and Sine map (2D-HELS), to bolster data security. The proposed method synergizes three key components: the FeistelX Network offers a robust encryption framework with bijectivity ensured by property H; the extended DNA cryptography and wands the key space and minimizes pixel correlation through advanced DNA operations; and the two hyperchaotic maps generate highly intricate chaotic sequences, ensuring greater randomness and resilience. Compared to existing schemes, the proposed method demonstrates improved diffusion, randomness, and resistance to statistical attacks. Experimental results show that this method achieves high-security indicators, with Chi-square values consistently below the critical threshold, average entropy values of 7.9994, and UACI and NPCR metrics remaining within the optimal theoretical ranges. Moreover, the method passed all sixteen NIST randomness tests with an average p-value of 0.6278. It demonstrated resilience to noise and data loss with PSNR values above 18 dB under attack scenarios. This combination of FeistelX structure, extended DNA operations, and dual hyperchaotic maps offers a novel and effective solution for enhancing image	Article Type:	Full Length Article
Universitas Dian Nuswantoro Semarang, Central Java INDONESIA Kristiawan Nugroho, Dr De Rosal Ignatius Moses Setiadi, Dr Eri Zuliarso, Dr Aceng Sambas, Dr Omar Farooq, Prof. The rising frequency of cyberattacks has heightened the need for more secure and efficient image encryption techniques. Traditional chaotic and DNA-based methods often struggle with limited key space, low diffusion efficiency, or vulnerability to statistical attacks, especially when handling large or high-dimensional image data. This study introduces an image encryption technique that integrates the FeistelX Network with extended DNA cryptography and two distinct two-dimensional hyperchaotic maps, namely the two-dimensional symbolic chaotic map (2D-SCM) and the two-dimensional hyperchaotic exponential adjusted Logistic and Sine map (2D-HELS), to bolster data security. The proposed method synergizes three key components: the FeistelX Network offers a robust encryption framework with bijectivity ensured by property H; the extended DNA cryptography expands the key space and minimizes pixel correlation through advanced DNA operations; and the two hyperchaotic maps generate highly intricate chaotic sequences, ensuring greater randomness and resilience. Compared to existing schemes, the proposed method demonstrates improved diffusion, randomness, and resistance to statistical attacks. Experimental results show that this method achieves high-security indicators, with Chi-square values consistently below the critical threshold, average entropy values of 7.9994, and UACI and NPCR metrics remaining within the optimal theoretical ranges. Moreover, the method passed all sixteen NIST randomness tests with an average p-value of 0.6278. It demonstrated resilience to noise and data loss with PSNR values above 18 dB under attack scenarios. This combination of FeistelX structure, extended DNA operations, and dual hyperchaotic maps offers a novel and effective solution for enhancing image encryption security beyond traditional approaches.	Keywords:	71 0 1 21
Abstract: Kristiawan Nugroho, Dr De Rosal Ignatius Moses Setiadi, Dr Eri Zuliarso, Dr Aceng Sambas, Dr Omar Farooq, Prof. The rising frequency of cyberattacks has heightened the need for more secure and efficient image encryption techniques. Traditional chaotic and DNA-based methods often struggle with limited key space, low diffusion efficiency, or vulnerability to statistical attacks, especially when handling large or high-dimensional image data. This study introduces an image encryption technique that integrates the FeistelX Network with extended DNA cryptography and two distinct two-dimensional hyperchaotic maps, namely the two-dimensional symbolic chaotic map (2D-SCM) and the two-dimensional hyperchaotic exponential adjusted Logistic and Sine map (2D-HELS), to bolster data security. The proposed method synergizes three key components: the FeistelX Network offers a robust encryption framework with bijectivity ensured by property H; the extended DNA cryptography expands the key space and minimizes pixel correlation through advanced DNA operations; and the two hyperchaotic maps generate highly intricate chaotic sequences, ensuring greater randomness and resilience. Compared to existing schemes, the proposed method demonstrates improved diffusion, randomness, and resistance to statistical attacks. Experimental results show that this method achieves high-security indicators, with Chi-square values consistently below the critical threshold, average entropy values of 7.9994, and UACI and NPCR metrics remaining within the optimal theoretical ranges. Moreover, the method passed all sixteen NIST randomness tests with an average p-value of 0.6278. It demonstrated resilience to noise and data loss with PSNR values above 18 dB under attack scenarios. This combination of FeistelX structure, extended DNA operations, and dual hyperchaotic maps offers a novel and effective solution for enhancing image encryption security beyond traditional approaches.	Corresponding Author:	Universitas Dian Nuswantoro
De Rosal Ignatius Moses Setiadi, Dr Eri Zuliarso, Dr Aceng Sambas, Dr Omar Farooq, Prof. The rising frequency of cyberattacks has heightened the need for more secure and efficient image encryption techniques. Traditional chaotic and DNA-based methods often struggle with limited key space, low diffusion efficiency, or vulnerability to statistical attacks, especially when handling large or high-dimensional image data. This study introduces an image encryption technique that integrates the FeistelX Network with extended DNA cryptography and two distinct two-dimensional hyperchaotic maps, namely the two-dimensional symbolic chaotic map (2D-HELS), to bolster data security. The proposed method synergizes three key components: the FeistelX Network offers a robust encryption framework with bijectivity ensured by property H; the extended DNA cryptography expands the key space and minimizes pixel correlation through advanced DNA operations; and the two hyperchaotic maps generate highly intricate chaotic sequences, ensuring greater randomness and resilience. Compared to existing schemes, the proposed method demonstrates improved diffusion, randomness, and resistance to statistical attacks. Experimental results show that this method achieves high-security indicators, with Chi-square values consistently below the critical threshold, average entropy values of 7.9994, and UACI and NPCR metrics remaining within the optimal theoretical ranges. Moreover, the method passed all sixteen NIST randomness tests with an average p-value of 0.6278. It demonstrated resilience to noise and data loss with PSNR values above 18 dB under attack scenarios. This combination of FeistelX structure, extended DNA operations, and dual hyperchaotic maps offers a novel and effective solution for enhancing image encryption security beyond traditional approaches.	First Author:	Kristiawan Nugroho, Dr
Eri Zuliarso, Dr Aceng Sambas, Dr Omar Farooq, Prof. The rising frequency of cyberattacks has heightened the need for more secure and efficient image encryption techniques. Traditional chaotic and DNA-based methods often struggle with limited key space, low diffusion efficiency, or vulnerability to statistical attacks, especially when handling large or high-dimensional image data. This study introduces an image encryption technique that integrates the FeistelX Network with extended DNA cryptography and two distinct two-dimensional hyperchaotic maps, namely the two-dimensional symbolic chaotic map (2D-SCM) and the two-dimensional hyperchaotic exponential adjusted Logistic and Sine map (2D-HELS), to bolster data security. The proposed method synergizes three key components: the FeistelX Network offers a robust encryption framework with bijectivity ensured by property H; the extended DNA cryptography expands the key space and minimizes pixel correlation through advanced DNA operations; and the two hyperchaotic maps generate highly intricate chaotic sequences, ensuring greater randomness and resilience. Compared to existing schemes, the proposed method demonstrates improved diffusion, randomness, and resistance to statistical attacks. Experimental results show that this method achieves high-security indicators, with Chi-square values consistently below the critical threshold, average entropy values of 7.9994, and UACI and NPCR metrics remaining within the optimal theoretical ranges. Moreover, the method passed all sixteen NIST randomness tests with an average p-value of 0.6278. It demonstrated resilience to noise and data loss with PSNR values above 18 dB under attack scenarios. This combination of FeistelX structure, extended DNA operations, and dual hyperchaotic maps offers a novel and effective solution for enhancing image encryption security beyond traditional approaches.	Order of Authors:	Kristiawan Nugroho, Dr
Abstract: The rising frequency of cyberattacks has heightened the need for more secure and efficient image encryption techniques. Traditional chaotic and DNA-based methods often struggle with limited key space, low diffusion efficiency, or vulnerability to statistical attacks, especially when handling large or high-dimensional image data. This study introduces an image encryption technique that integrates the FeistelX Network with extended DNA cryptography and two distinct two-dimensional hyperchaotic maps, namely the two-dimensional symbolic chaotic map (2D-SCM) and the two-dimensional hyperchaotic exponential adjusted Logistic and Sine map (2D-HELS), to bolster data security. The proposed method synergizes three key components: the FeistelX Network offers a robust encryption framework with bijectivity ensured by property H; the extended DNA cryptography expands the key space and minimizes pixel correlation through advanced DNA operations; and the two hyperchaotic maps generate highly intricate chaotic sequences, ensuring greater randomness and resilience. Compared to existing schemes, the proposed method demonstrates improved diffusion, randomness, and resistance to statistical attacks. Experimental results show that this method achieves high-security indicators, with Chi-square values consistently below the critical threshold, average entropy values of 7.9994, and UACI and NPCR metrics remaining within the optimal theoretical ranges. Moreover, the method passed all sixteen NIST randomness tests with an average p-value of 0.6278. It demonstrated resilience to noise and data loss with PSNR values above 18 dB under attack scenarios. This combination of FeistelX structure, extended DNA operations, and dual hyperchaotic maps offers a novel and effective solution for enhancing image encryption security beyond traditional approaches.		De Rosal Ignatius Moses Setiadi, Dr
Omar Farooq, Prof. The rising frequency of cyberattacks has heightened the need for more secure and efficient image encryption techniques. Traditional chaotic and DNA-based methods often struggle with limited key space, low diffusion efficiency, or vulnerability to statistical attacks, especially when handling large or high-dimensional image data. This study introduces an image encryption technique that integrates the FeistelX Network with extended DNA cryptography and two distinct two-dimensional hyperchaotic maps, namely the two-dimensional symbolic chaotic map (2D-SCM) and the two-dimensional hyperchaotic exponential adjusted Logistic and Sine map (2D-HELS), to bolster data security. The proposed method synergizes three key components: the FeistelX Network offers a robust encryption framework with bijectivity ensured by property H; the extended DNA cryptography expands the key space and minimizes pixel correlation through advanced DNA operations; and the two hyperchaotic maps generate highly intricate chaotic sequences, ensuring greater randomness and resilience. Compared to existing schemes, the proposed method demonstrates improved diffusion, randomness, and resistance to statistical attacks. Experimental results show that this method achieves high-security indicators, with Chi-square values consistently below the critical threshold, average entropy values of 7.9994, and UACI and NPCR metrics remaining within the optimal theoretical ranges. Moreover, the method passed all sixteen NIST randomness tests with an average p-value of 0.6278. It demonstrated resilience to noise and data loss with PSNR values above 18 dB under attack scenarios. This combination of FeistelX structure, extended DNA operations, and dual hyperchaotic maps offers a novel and effective solution for enhancing image encryption security beyond traditional approaches.		Eri Zuliarso, Dr
The rising frequency of cyberattacks has heightened the need for more secure and efficient image encryption techniques. Traditional chaotic and DNA-based methods often struggle with limited key space, low diffusion efficiency, or vulnerability to statistical attacks, especially when handling large or high-dimensional image data. This study introduces an image encryption technique that integrates the FeistelX Network with extended DNA cryptography and two distinct two-dimensional hyperchaotic maps, namely the two-dimensional symbolic chaotic map (2D-SCM) and the two-dimensional hyperchaotic exponential adjusted Logistic and Sine map (2D-HELS), to bolster data security. The proposed method synergizes three key components: the FeistelX Network offers a robust encryption framework with bijectivity ensured by property H; the extended DNA cryptography expands the key space and minimizes pixel correlation through advanced DNA operations; and the two hyperchaotic maps generate highly intricate chaotic sequences, ensuring greater randomness and resilience. Compared to existing schemes, the proposed method demonstrates improved diffusion, randomness, and resistance to statistical attacks. Experimental results show that this method achieves high-security indicators, with Chi-square values consistently below the critical threshold, average entropy values of 7.9994, and UACI and NPCR metrics remaining within the optimal theoretical ranges. Moreover, the method passed all sixteen NIST randomness tests with an average p-value of 0.6278. It demonstrated resilience to noise and data loss with PSNR values above 18 dB under attack scenarios. This combination of FeistelX structure, extended DNA operations, and dual hyperchaotic maps offers a novel and effective solution for enhancing image encryption security beyond traditional approaches.		Aceng Sambas, Dr
efficient image encryption techniques. Traditional chaotic and DNA-based methods often struggle with limited key space, low diffusion efficiency, or vulnerability to statistical attacks, especially when handling large or high-dimensional image data. This study introduces an image encryption technique that integrates the FeistelX Network with extended DNA cryptography and two distinct two-dimensional hyperchaotic maps, namely the two-dimensional symbolic chaotic map (2D-SCM) and the two-dimensional hyperchaotic exponential adjusted Logistic and Sine map (2D-HELS), to bolster data security. The proposed method synergizes three key components: the FeistelX Network offers a robust encryption framework with bijectivity ensured by property H; the extended DNA cryptography expands the key space and minimizes pixel correlation through advanced DNA operations; and the two hyperchaotic maps generate highly intricate chaotic sequences, ensuring greater randomness and resilience. Compared to existing schemes, the proposed method demonstrates improved diffusion, randomness, and resistance to statistical attacks. Experimental results show that this method achieves high-security indicators, with Chi-square values consistently below the critical threshold, average entropy values of 7.9994, and UACI and NPCR metrics remaining within the optimal theoretical ranges. Moreover, the method passed all sixteen NIST randomness tests with an average p-value of 0.6278. It demonstrated resilience to noise and data loss with PSNR values above 18 dB under attack scenarios. This combination of FeistelX structure, extended DNA operations, and dual hyperchaotic maps offers a novel and effective solution for enhancing image encryption security beyond traditional approaches.		Omar Farooq, Prof.
Parameter Residences	Abstract:	efficient image encryption techniques. Traditional chaotic and DNA-based methods often struggle with limited key space, low diffusion efficiency, or vulnerability to statistical attacks, especially when handling large or high-dimensional image data. This study introduces an image encryption technique that integrates the FeistelX Network with extended DNA cryptography and two distinct two-dimensional hyperchaotic maps, namely the two-dimensional symbolic chaotic map (2D-SCM) and the two-dimensional hyperchaotic exponential adjusted Logistic and Sine map (2D-HELS), to bolster data security. The proposed method synergizes three key components: the FeistelX Network offers a robust encryption framework with bijectivity ensured by property H; the extended DNA cryptography expands the key space and minimizes pixel correlation through advanced DNA operations; and the two hyperchaotic maps generate highly intricate chaotic sequences, ensuring greater randomness and resilience. Compared to existing schemes, the proposed method demonstrates improved diffusion, randomness, and resistance to statistical attacks. Experimental results show that this method achieves high-security indicators, with Chi-square values consistently below the critical threshold, average entropy values of 7.9994, and UACI and NPCR metrics remaining within the optimal theoretical ranges. Moreover, the method passed all sixteen NIST randomness tests with an average p-value of 0.6278. It demonstrated resilience to noise and data loss with PSNR values above 18 dB under attack scenarios. This combination of FeistelX structure, extended DNA operations, and dual hyperchaotic maps offers a novel and effective solution for enhancing image
	Response to Reviewers:	one space essent bosona administration approaches.

To: Editor
Re: Response to reviewers
Dear Editor,
Thank you for allowing a revision of our manuscript, with an opportunity to address the reviewers' comments.
We are uploading (a) our point-by-point response to the comments (below) (response to reviewers), (b) an updated manuscript with yellow highlighting indicating changes (Supplementary Material for Review), and (c) a clean updated manuscript without highlights (Main Manuscript).
Best regards,
Authors.

Berikut merupakan detail proses revisi dilakukan (<u>Link</u>)

5. Turnitin (Plagiarism Checked)

FeistelX Network-Based Image Encryption Leveraging Hyperchaotic Fusion and Extended DNA Coding

Berikut merupakan hasil cek plagiarisme selengkapnya dengan Turnitin (Link)

6. Confirming Submission

Confirming submission to Egyptian Informatics Journal

Egyptian Informatics Journal <em@editorialmanager.com> Reply-To: Egyptian Informatics Journal <support@elsevier.com> To: De Rosal Ignatius Moses Setiadi <moses@dsn.dinus.ac.id> Mon, Apr 28, 2025 at 12:45 AM

This is an automated message.

Manuscript Number: EG|J-D-24-00766R1

Feiste|X Network-Based |mage Encryption Leveraging Hyperchaotic Fusion and Extended DNA Coding

Dear Mr. Setiadi.

We have received the above referenced manuscript you submitted to Egyptian Informatics Journal.

To track the status of your manuscript, please log in as an author at https://www.editorialmanager.com/egij/, and navigate to the "Revisions Being Processed" folder.

Thank you for submitting your revision to this journal.

Kind regards,

Egyptian Informatics Journal

More information and support

You will find information relevant for you as an author on Elsevier's Author Hub: https://www.elsevier.com/authors

FAQ: How can I reset a forgotten password?

https://service.elsevier.com/app/answers/detail/a_id/28452/supporthub/publishing/

For further assistance, please visit our customer service site: https://service.elsevier.com/app/home/supporthub/publishing/

Here you can search for solutions on a range of topics, find answers to frequently asked questions, and learn more about Editorial Manager via interactive tutorials. You can also talk 24/7 to our customer support team by phone and 24/7 by live chat and email

#AU_EGIJ#

To ensure this email reaches the intended recipient, please do not delete the above code

In compliance with data protection regulations, you may request that we remove your personal registration details at any time. (Use the following URL: https://www.editorialmanager.com/egij/login.asp?a=r). Please contact the publication office if you have any questions.

7. Decession of Submission (Accepted)

Decision on submission to Egyptian Informatics Journal

Egyptian Informatics Journal <em@editorialmanager.com>
Reply-To: Egyptian Informatics Journal <support@elsevier.com>
To: De Rosal Ignatius Moses Setiadi <moses@dsn.dinus.ac.id>

Sat, Jun 14, 2025 at 4:47 AM

Manuscript Number: EGIJ-D-24-00766R1

FeistelX Network-Based Image Encryption Leveraging Hyperchaotic Fusion and Extended DNA Coding

Dear Mr. Setiadi.

Thank you for submitting your manuscript to Egyptian Informatics Journal.

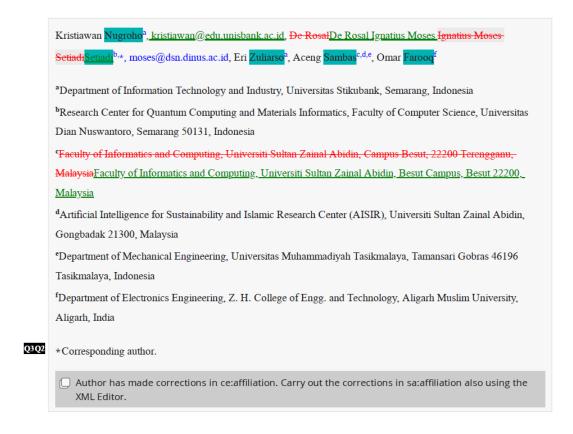
I am pleased to inform you that your manuscript has been accepted for publication.

My comments, and any reviewer comments, are below.

Your accepted manuscript will now be transferred to our production department. We will create a proof which you will be asked to check, and you will also be asked to complete a number of online forms required for publication. If we need additional information from you during the production process, we will contact you directly.

We appreciate and value your contribution to Egyptian Informatics Journal. We regularly invite authors of recently published manuscript to participate in the peer review process. If you were not already part of the journal's reviewer pool, you have now been added to it. We look forward to your continued participation in our journal, and we hope you will consider us again for future submissions.

We encourage authors of original research papers to share the research objects – including raw data, methods, protocols, software, hardware and other outputs – associated with their paper. More information on how our open access Research Elements journals can help you do this is available at https://www.elsevier.com/authors/tools-and-resources/research-elements_journals?dgcid=ec_em_research_elements_email.


Kind regards, Reda El-Khoribi Editor-in-Chief

Egyptian Informatics Journal

Editor and Reviewer comments:

8. Proofread by Elsevier

FeistelX network-based image encryption leveraging myperchaotic fusion and extended DNA coding

Detail proses profread (Link)

9. Full Published (Volume 31, 1 September 2025)

Paper dipublikasikan pada halaman Sciencedirect (Link)