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Abstract: This rescarch aims to develop a robust diabetes classification method by integrating the
Synthetic Minority Over-sampling Technique (SMOTE)-Tomek technique for data balancing and us-
ing a machine learning ensemble led by ¢ 'me Gradient Boosting (XGB) as a meta-learner. We
propose an ensemble model that combines deep learning techniques such as Bidirectional Long Short-
Term Memory (BILSTM) and Bidirect| Gated Recurrent Units (BiIGRU) with XGB classifier as
the base learner. The data used included the Pima Indians Diabetes and Iraqi Society Diabetes datasets,
which were processed by missing value handling, duplication, normalization, and the application of
SMOTE-Tomek to resolve data imbalances. XGB, as a meta-learner, successfully improves the model's
predictive ability by rtdg bias and variance, resulting in more accurate and robust classification.
The proposed ensemble model achieves perfect accuracy, precision, recall, specificity, and F1 score of
100% on all tested datasets. This method shows that combining ensemble learning techniques with a

rigotous preprocessing approach can significantly improve diabetes classification performance.

Keywords: Diabetes Classification; Ensemble Learning; XGBoost Meta-Learner; SMOTE-Tomek;
Deep Learning in Healthcare.

1. Introduction

Diabetes mellitus is a majofEBallenge in global health, characterized by its chronic nature
and significant contribution to morbidity and mortality EZrdwide[1], [2]. According to the
Wortld Health Organization (WHO), the prevalence of diabetes is expected to become the
seventh leading cause of death by 2030[3]. These projections emphasize the critical need for
early diagnosis and intervention, which can substantally reduce the serious complications
associated with this disease. Current statistical data reveal an alarming increase in the preva-
lence of diabetes globally, almost doubling since 1980, caused by increasing cases of type 2
diabetes driven by obesity, aging, and unhealthy lifestyles|4], [5]. Early detection and accurate
classification of diabetes can prevent many of these cases from progressing to serious com-
plications such as nephropathy, retinopathy, and cardiovascular disease. Unfortunately, the
majority of cases of Non-Communicable Diseases, including diabetes, are difficult to diag-
nose atan early stage, leading to under-treatment of the disease and significant reductions in
health outcomes|[4], [6].

In developing medical applications for early diabetes detection, various classification
methods have been utilized to improve the level of prediction accuracy. Several widely used
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diabetes datasets include Iraqi Society Diabetes (ISD) (7], Abelvikas[8], and PIMA Indians 48
Diabetes (PID) [9], [10]. Each diabetes classificatfd method developed will have a different 49
performance in each database. Previous research was able to easily classify the Abelvikas da- 50
taset with an accuracy of up to 1.0 only with traditional machine learning methods|3], [11]. 51
Datasets from ISD are still relatively easy to classify, because they can produce an accuracy
of up to 0.99 in research[12]. While the PID dataset is the most popular and challenging
diabetes dataset, many studies, such as [3], [4], [12]-[16], are only able to produce prediction
accuracy of around 0.69 to 0.885. Even in research [3] when the same method could work
with an accuracy of 1.0 on the Abelvikas dataset, it only produced an accuracy of (.75 on the
PID dataset. This shows that the input dataset significantly affects the method's performance.
Furthermore, research in [17], which used the P1D dataset produced a model with an accuracy
performance of up to (193, and research in [1,18] achieved an accuracy of around (.98 with a
deep learning-based method. This shows the development of increasingly sophisticated clas-
sification methods. However, developing a classification model that is more adaptive and
sensitive to intrinsic data variations in different diabetes datasets is urgent, in this case in order
to obtain robust and accurate performance in various datasets.
Classification methods can generally be classified into three large groups: Machine
Learning (ML), Deep Learning (DL), and Ensemble Methods. ML offers several approaches
that have beefBed for a long time, such as decision trees, which are very easy to understand
and interpret but are often prone to overfitting. Support Vector Machines (SVM) are very
effective for high-dimensional data but are inefficient for large datasets because they tend to
be slow[18]. Logistic Regression offers an easy-to-implement model and predicts results in
the form of probabilities, but its performance suffers at complex and non-lincar decision
boundaries. DL, in this context through models based on Recurrent Neural Nerworks (RNN),
provides unique capabilities in processing sequence or time series data, which is crucial for 72
applications such as electronic medical records[19]. RNN, by default, can wgk well for tem- 73
poral data but often expetiences vanishing gradient problems. Other RNN methods, such as 74
Long Short-Term Memory (LSTM) are more sophisticated because they are able to overcome 75
this problem with gates that control the flow of information, making them better at learning 76
long-term dependencies. Furthermore, there are also Gated Recurrent Units (GRU), which 77
are newer, simplify the LSTM structure, and are usually more computationally efficient. How- 78
ever, both of these models require large datasets and long training times. 79
Ensemble methods can combine several ML or DL methods or both. These ML and 80
DL methods are used as basic methods that produce initial predictions. Then, the final pre- 81
dictions are determined using several techniques, such as voting, stacking, or boosting. The
more basic methods used can provide richer insights, but the complexity becomes more com-
plex, and the computation becomes heavy. When using voting models, several models are
applied independently, and more methods (can be more than three models) are generally used
to produce maximum performance[20]—[23]. Voting tends to produce a more stable model
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that reduces the risk of overfitting through prediction aggregation. But it is sometimes less
effective in dealing with the diversity and complexity of data because it only combines the
final results of different models without considering the relationship between their predic- 89
tions. Stacking involves training a secondary model, namely a meta-learner, to combine pre- 90

EERFEEN

dictions from several base models. This allows the meta-learner Blcarn from mistakes made 91
by the base model more flexibly than voting. Boosting works by training models sequendally, 92
where each new model tries to correct the errors made by the previous model|24|. This results 93
in a series of models that focus on difficult cases that their predecessors failed to predict 94
correctly, usually resulting in higher accuracy. One of the most famous boosting methods is 95
eXtreme Gradient Boosting (XGB)[25]. 9%
Combining stacking and boosting can provide significant benefits because it combines 97
the advantages of both techniques. Stacking allows us to combine models with different al- 98
gorithms, including those that may tend to overfit or have weaknesses in certain aspects of 99
the data. Meta-learners can learn how to combine these predictions most profitably. Boostng 100
can effectively improve weak predictions made by individual models in the stack by focusing 101
learning on difficult examples. This can reduce overall bias and variance while improving 102
model generalization. This research combines these two methods, using XGB as a meta- 103
learner from stacking. So, an ensemble model can be created thar benefits not only from the 104
collective wisdom of various learning algorithms but also from sequential learning that fo- 105
cuses on error reduction. This can produce very powerful models that take advantage of the 106
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learning depth of the base model while gradually reducing errors through the boosting pro- 107
CCss. 108

In the context of medical data classification research, we often find relatively litde and 109
unbalanced data. This greatly affects the classification performance. This makes the process 110
of balancing data with oversampling necessary. Because if undersampling is done, the data 111
will become increasingly meaningless. Oversampling methods such as the synthetic minority 112
over-sampling technique (SMOTLE) are populatly used compared to random oversampling. 113
Random oversampling methods generally do not provide significant or no effects[26]. One 114
development of the SMOTE method is SMOTE-Tomek links[15]. This is a variant of 115
SMOTE combined \xmthe Tomek undersampling technique. In simple terms, SMOTE- 116
Tomek links work by using SMOTE to add minority samples and then using Tomek Links 117
to delete samples from the majority class that are too close o the minority class, thereby 118
reducing overlap between classes. In this way, the dataset's quality improves, and ultimately, 119
the machine becomes more effective when learning. 120

Based on the literature above, carrying out classification based on traditional ML meth- 121
ods is not possible to produce optimal results. The use of preprocessing methods such as 122
balancing datasets using oversampling, feamre selection, missing value imputation, or poly- 123
nomial regression has the potential to improve performance. Deep learning methods also 124
perform better in this case. So, this research proposes to combine several deep learning meth- 125
ods and SMOTE-Tomek sampling techniques in a stacking-boosting ensemble method for 126

robust diabetes data recognition. Further contributions of this paper are: 127
1. Implementation of the SMOTE-Tomek sampling technique to improve distribution and 128
quality. 129

2. Combining three methods, namely: BiLSTM and BiGRU, which are deep learning meth- 130
ods, and the XGB ensemble boosting method as a basic learning method for diabetes 131
classification. 132

3. Combining three basic learning methods ina stmmg—boosting ensemble, XGB is used, 133
which is one of the boosting ensemble models used as a meta-learner in the stacking 134
ensemble method. 135

4. Test the method on popular diabetes datasets to prove the method's robustness. 136
The next part of this paper will discuss preliminaries, which contain related works and 137

important theories. Next, the proposed method, the results obtained from applying the 138

method, and a discussion of the implications of these results in the broader context of diabe- 139

tes classification are presented in detail. The discussion will include an in-depth analysis of 140

the influence of the SMOTE-Tomek technique in balancing datasets, the effectiveness of 141

ensemble models directed by the XGBoost meta-learner, how this combination improves the 142

model's predictive ability over previous approaches, and ends with a conclusion. 143
2. Preliminaries 144
2.1 Bidirectional Long Short-Term Nmory (BiLSTM) 145

BiLSTM is a DL model based on a Recurrent Neural Network (RNN). RNN is aneural 146
mwnrk that handles data sequences, such as text or time series. RNNs have the feature that 147
the output of the previous step is provided as input to the next step, helping the network to 148
retain memory of previously processed information. Traditional RNNs experience the prob- 149
lem of vanishing gradient, where the gradient used in the learning process can become very 150
small, making learning very slow or even stopping, To overcome this problenBISTM, a var- 151
iant of RNN, was developed. LSTM introduces the concept of gates, namely input gates (ig), 152
forget gates (f,), and output gates (0;) which effectively allows the network o learn whento 153
“remember” and when to “forget” information that is no longer relevant. Apart from that,a 154
cell state update function (€;) was also added to help maintain relevant information over long 155
data sequences without being affected by the vanishing gradient problem|[27], [28]. Equation 156
(1)-(4) shows the important fo&mlﬂ for building the gates used. 157

fe= U(Wf' [Re—1,x] + bf) (1

iy = a(W; - [he_q,x,] + by)

- @
C; = tanh(We - [hy_q, 2] + D)
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Ce = fe* Ceoy + i * G, (3

0p = a(W, - [he—1. %] + b,)

h, = m tanh(C,)

B) Where f, is the activation of the forget gate at time £, @ is the sigmoid function, 158

“@

W is the weight of the forget gate, hy_4 is the hidden state from the previous timestep, X; 159
is the input fffmestep t, by is biased for the forget gate, C; is a candidate value for the 160
memory cell, and A is the hidden state at time ¢. 161

BiLSTM is a further development of LSTM. BiLSTM processes data in two directions: 162
forward and backward in separate layer formation. The first layer flows information from 163
beginning to end, and the second layer flows information from end to beginning, so the net- 164
work has context from the past and future at each point. This can improve tE@nodel's ability 165
to understand both past and future context in the data sequence|29], [30]. This is especially 166
useful for tasks such as language processing, where the context of the words before and after 167
is very important. BILSTM offers increased accuracy in classification and other complex tasks 168
as well as flexibility in combining information from both directions. In terms of tuning, some 169
key hyperp'mmeters include the number of hidden units, which determines the complexity 170
the model can handle; learning rate, which must be adjusted carefully to avoid slow or fast 171
convergence; the number of layers, which affects the depth of the learning representation; 172
dropout rate, to prevent overfitting; batch size, which affects the stability of gradient estima- 173
tion and memory efficiency; and sequence length, which should be adjusted based on data 174
context and task distribution. Proper setting of these hyperparameters is the key to optimizing 175
BiL.STM performance. 176

2.2 %irectional Gated Recurrent Units (BiGRU) 177

GRU is a variation of RNN designed to overcome[lle same problem as LSTM, namely 178
vanishing gradient, but with a simpler structure. GRU combines the input gate and forget 179
gate into a single update gate, thereby reducing the number of parameters to be trained and 180
speeding up the training process without sacrificing too much memory capability. BIGRU is 181
a GRU implementation that processes data in two directions, similar to BILSTM. By utilizing 182
two GRU layers with two-way information flow, BiIGRU is able to better capture the before 183
after context in data sequences[19], [31], [32]. GRU works with two types of gates, namely 184
Update Gate and Reset Gate, which are explained in Equation (5) and (6), and new Hidden 185

state, which is explained in Equation (7). 186
11
zp = oWy~ [he_q,x,]) )
ry=o(W. - [hy_q.x]) (©)

R, = tanh(W - [1 * hy_y,x,])

he=z¢ s hey + (L —2z) % he W

Where z; is the update gate vector at time ¢, ¢ is the sigmoid function, W, is the 187
weight of the update gate, iy is the hidden statelom the previous timestep, X; is the 188
input at timestep t, 7, is the reset gate vector, Dﬂ is the weight matrix for the reset gate, 189
he is the new hidden state candidate, W is the weight matrix, h; is the updated hidden 190
state. 191

The main hyperparameters in BiGRU include the number of hidden units, learning rate, 192
number of layers, dropout rate, batch size, and sequence length. Effective tuning of these 193
parameters requires experimenmtion and adjustments based on validation results to achieve 194
a balance between training speed, memory requirements, and accuracy. BiGRU offers high 195
computational efficiency because it has a qlmpler structure than BILSTM. This model effec- 196
tively understands bidirectional context, resulting in improvements in understanding depend- 197
encies in the data. 198
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23 Wting Ensemble

Boosting is an ensemble learning technique in machine learning that aims to create a
robust model from a series of weaker models. This method works iteratively, where each
newly added model attempts to correct the errors made by the previous model. Each model
in this process focuses more on data samples that were difficult to predict by the previous
model so that each subsequent model becomes more specific in overcoming the difficuldes
encountered(33], [34]. Boosting has a general working method as follows:

Initialization: Each data sample is given the same weight or weight based on distribution.
2. lterf@%: wainer models are added one by one.

a. The first model is trained on all the data.

b. For each subsequent model, the data sample weights are adjusted so that the model

focuses mordff samples that the previous model had incorrectly predicted.

c. This process is repeated undl the maximum number of models is reached or addi-

tional models no longer improve accuracy.
3. Aggregation: the output of all models is taken by a certain method to get the final pre-
diction.

While intuitively focusing on the wrong samples sounds like it will increase overfiting,
boosting often shows good resistance to overfitting, especially if the number of models used
is controlled. Boosting tends to be more effective in reducing bias and variance tigg8 other
ensemble methods, such as bagging. Some popular boosting algorithms include Adaptve
Boosting (AdaBoost), Gradient Boosting Machines (GBM), Extreme Gradient Boosting
(XGBoost/XGB), LightGBM, and CatBoost. Where AdaBoost is the carliest boosting
model, GBM is a boosting model that applies gradients from the loss function to guide the
learning process, lightGBM is a lighter and faster version of GBM, XGB is an optimized
version of GBM, and CatBoost is a boosting method that is more focused on getting high
accuracy in data that has the majority of categorical data.

Regarding medical datasets with limited categoricality and require optimal performance,
XGBoost was chosen in this research because it is a sophisticated implementation of current
gradient-boosted trees. The main features of XGBoost include the addition of regularization
to reduce overfitting, parallel processing that maximizes modern hardware, automatic han-
dling of missing values, tree pruning with a depth-first approach, and integration of cross-
validation which makes it easier to rune parameters efficiendy[16], [35]. Important hyperpa-
rameters in XGBoost, such as max_depth, eta, subsample, and colsample_bytree, play an
important role in optimizing the model. Tuning XGBoost involves adjusting these hyperpa-
rameters using techniques such as cross-validation and grid search to achieve a balance be-
tween training speed and accuracy.

2.4 Stacking Ensemble

Stacking is an ensemble achinc—lcaming technique that combines predictions from
multiple models to produce more accurate predictions. This method involves two levels of
models: a first-level model, usually referred to as a base learner, and a second-level model that
aggregates their predictions or is known as a meta-learner|2]. In general, stacking works with
several stages as follows:

1. Base Learners Training: different ML models are trained separately on the same dataset.
These models can vary from linear regression, decision trees, SVM, neural networks,
even DL models.

2. Predictions from Base Learners: each base learner makes predictions, which the meta-
learner uses as input. THER predictions can be class outputs or predicted probabilities.

3. Mem-Learner Training: the meta-learner is trained on predictions from the base learner
as features with the same output/target as the initial training data. The goal is to learn
how to combine base learner predictions best to improve accuracy.

The main advantages of stacking include diversifying the model through the use of mul-
tiple algorithms, which can reduce the risk @@bverfitting. In stacking, meta-leamers such as
linear regression or other ensemble models play an important role in integrating the output
of the base learners, providing flexibility in combining predictions and increasing control over
the integration process. The selection and complexity of meta-learners are crideal, as they
must be able to optimize and aggregate predictions effectively to minimize prediction error.
The right meta-learner, especially one trained using out-of-fold predictions from the base
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learner, can significanty improve model accuracy and robustness. Overall, the stacking tech- 256
nique harnesses the power of combining various models to produce very accurate and robust 257
predictions. 258

2.5 Related Works 259

Various studies related to diabetes classification have been caried out, one of which is 260
the research of Pradhan et £§)]14], which tested several methods such as Naive Bayes (NB), 261
SVM, Random Forest, and Artificial Neural Netw &) (ANN) on the Pima Indian Diabetes 262
(PID) dataset. The ANN model is structured with an input layer, several hidden layers, and 263
an output layer, using Rectified Linear Unit (Rel.U) afflsigmoid activation functions to pro- 264
cess data more effectively. This configuration allows the model to learn complex patterns in 265
the data without being affected as much by overfitting or noise. Numerically, the test results 266
show that the ANN achieves superior performance metrics compared to other models. Its 267
accuracy reached 8§5.09% in the diabetes prediction task, surpassing other techniques signifi- 268
cantly. Another study cducted by Wang et al. [13] introduced the DMP_MI algorithm. 269
DMP_MI was designed to improve the accuracy of diabetes mellitus classification on the 270
Pima Indians Diabetes (P1D) datasct. The PID dataset has some problems with missing val- 271
Bs and class imbalance. This algorithm uses the Naive Bayes method to fill in missing values, 272
the Adaptive Synthetic Sampling (ADASYN) method to balance class@h the dataset, and 273
Random Forest as a classifier. Experimental results show that DMP_MI achieved an accuracy 274
of 0.871, recall of (.857, and precision of (0.806. This papet's conclusion confirms that com- 275
bining data infill techniques, adaptive synthetic sampling, and robust classifiers can signifi- 276
cantly overcome data quality problems and improve the effectiveness of medical diagnostic 277
systems. 278
Ozmen and Ozcan's research [17] evaluated and compared four different approaches 279
Classification and Regression Tree (CART), Ardficial Neural Network (ANN), CART- Ge- 280
netic Algorithm (CART- GA), and ANN-GA using the PID dataset. GA is assigned to adjust 281
parameters in CART and ANN. Experimental results show that the CART-GA approach 282
provides the best performance. Specifically, in testing using 10-fold cross-validation, the ac- 283
curacy reached 93.42%, whereas without GA the accuracy was only 70.13%. In comparison, 284
the traditional ANN model without GA optimization has lower accuracy, namely 59.74% in 285
10-fold cross-validation, whereas when applying GA, the accuracy is 81.82%. CART-GA con- 286
sistently outperformed other approaches in all tested metrics—accuracy, precision, specificity, 287
and F1 measure. This data shows that optimization using GA significantly increases the ef- 288
fectiveness of machine learning mEER!s in diagnosing Diabetes Mellitus. 289
Asniar et al[l15] proposed the Local Outier Factor (LOF) method into SMOTE 290
(SMOTE-LOF) for handling noise problems in imbalanced data. Keep in mind that most = 291
med#A! datasets are relatively unbalanced. The SMOTE-LOF method succeeded in increas- 292
ing the accuracy of the classification model on various datasets, including the PID dataser, 293
Haberman's Survival Data, and the Glass ldentificaion Database. Specifically, for the PID 294
dataset, SMOTE-LOF shows significant numerical accuracy improvements over both C4.5, 295
NB and SVM. C.45 produced the best results with accuracy increasing from 71.09 with noth- 296
ing to 73.03% with SMOTE to 75.13% and 75.10% for parameters k=3 and k=5 in SMOTE- 297
LOF. These results confirm that both SMOTE and SMOTE-LOF sampling methods can 298
ctfectively minimize noise's influence and improve predictive performance. 299

Chang et al. [4] compared several ML methods, such as NB, RF, and |48 decision trees 300
to classity diabetes mellitus. The dataset used is also a PID dataset. Based on the test results, 301
NB has good performance with feature selection, while RF is more effective when using more 302
features. Apart from that, the best results were obtained by RF with an accuracy of up to 303
79.57%, a precision of 89.40%, and an AUC value of 86.24%. Similar research was conducted 304
by Tasin et al. [16], here, the PID dataset is combined with several private datasets. Based on 305
test results, using XGB and ADASYN, the accuracy reached (.885, whereas, without 306
ADASYN, the accuracy was only (L78. This shows that the addition of synthedc data im- 307
proves classifier performance. 308

Naz and Ahuja [36] used another approach in classifying diabetes on the same dataset, 309
namely PID. A DL method with a multilayer perceptron artificial neural network and back- 310
propagation technique is proposed to improve prediction performance. DL was tested and 311
compared with other methods, such as ANN, NB, and DT. As a result, DL shows superior 312
performance with an accuracy of 98.07%, which is much higher than other methods, which 313
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have an accuracy of between 76% and 96%. With these results, DL is proven to be the most 314
effective and promising method for use in early diagnosis of diabetes. A DL method called 315
twice growth deep neural network (2GDNN) was also proposed by Olisah et al.[1]. This was 316
done due to the limitations of previously used prediction methods that could not achieve the 317
expected accuracy and problems with the PID daraser, such as missing values and non-normal 318
data distrilffflon. As a solution, innovative data processing methods are proposed, including 319
the use of Spearman correlation for feature selection and polynomial regression for imputa- 320
tion of missing values. The 2GDNN method was also compared with the SVM and RF meth- 321
ods, and as a result, 2GDNN showed significant performance improvements, with accuracy, 322
sensitivity, and F1 score all above 97%. 323

Previous research shows a variety of methods for diabetes classification, from traditional 324
machine learning to deep learning and ensemble techniques. Although many achieve high 325
accuracy, challenges remain in handling imbalanced datasets and data variations, especially in 326
PIMA datasets. Therefore, this study proposes a combination of SMOTE-Tomek and stack- 327
ing-boosting ensemble techniques with XGBoost as a meta-learner to improve diabetes clas- 328
sification performance. 329

3. Proposed Method 330

Inspired by various research that has been discussed previously and the theories de- 331
scribed above. This research proposes 2 model that combines the BILSTM, BIGRUEM XGB 332
classifier methods as a base learner. The three base learners are combined using a stacking 333
ensemble with an XGB regressor as a meta-learner. In addition, duplicate data, missing values, 334
SMUEIJ-Tomek, and normalization were removed at the preprocessing stage. As an illustra- 335
tion, the proposed method is depicted in Figure 1. 336

4 ™

=0 s ]
=5

J
Training and Validation

\ J 337

Figure 1. Proposed Method [lustration 338

Based on Figure 1, the stages are explained in more detail as follows: 339

1. Inputdata is read and stored in a data frame 340

2. Preprocessing is carried out in the following stages: 341
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. Label encoder to convert non-numeric values into numeric values. For example, 342
the feature 'Gender' with the values 'Male' and 'Female', will be converted to 0 and 343
1, so that the machine learning model easily processes it. 344
e  Data cleaning is carried out by removing duplicates and missing values. Duplicate 345
data was removed to avoid redundancy in the data. Meanwhile, deleting missing 346
values on rows containing missing values is deleted to ensure data quality. 347
. Dividing Features and Targets: Dividing feamres and targets is done after data 348
cleaning. The data needs to be separated as to what will be the input for the model 349

(X) from what we want the ffdel o predict (v). 350
¢ In the data-sharing process, the data is divided into training and testing sets with 351
a ratio of 80:20. 352

e (lass balancing on the training set was performed with SMOTE-Tomek. SMOTE 353
is used for oversampling minority classes, while Tomek-Links is used for under- 354
sampling the majority of classes, potentially creating overlapping classes. 355

e The final step in preprocessing is data normalizaton. Normalization was per- 356
tormed after SMOTE-Tomek because class balancing techniques may have 357
changed the data distribution. Features are normalized with a standard scaler. Nor- 358
malization using StandardScaler refers to the standardization profddk, which gen- 359
crally involves changing data features so that the distribution has a mean value of 360
0 and a standard deviation of 1. The mathematical formula for standardizing a 361
teature is Equation (8). [10] 362

z=w 8)

a

Where X is the original value of the feature, g is the mean of the feature, ¢ is 363
the standard deviation of the feamre, and z is out standardization/normalization 364

process. 365
3. Design and compile the three models, i.e.: 366
¢ The BiGRU model design used is presented in Table 1. 367
Table 1. BiGRU Model Design. 368
No Setting/Parameter Value Note
1. RNN Layer Bidirectional (GRU (64)) The first layer will have a bidirectional

RNN layer with 64 GRU units.
Bidirectional (GRU (32)) The bidirectional RNN layer with 32

GRU units is used for the second layer.

2. return_sequences True (for the first layer) Returns the entire output sequence for
the first layer.
3 input_shape (X_train_scaled.shape[l], 1)  The model expects sequences with a

length according to the number of fea-
tutres in X_train_scaled and one feature
per timestep.

4. Dense layer y_train_resampled.max() + 1 This layer has the same number of units
as the classes in the y_train_resampled /
28 output layer.
5. Activation (Dense softmax The activation function is used in the out-
Layer) put layer for multi-class classification.
6. Optimizer adam Optimizer with a default learning rate
value of 0.001.
7. Loss Function categorical_crossentry Loss functions for multi-class classifica-
ton
8. Metrics accuracy Metrics that the model will evaluate dur-

ing training and validation.

369
. The BiLSTM model design used is presented in Table 2. 370
371
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Table 2. BiLSTM Model Design. 372
No Setting/Parameter Value Note
1. RNN layer Bidirectional(LSTM(64))  Bidirectional RNN layer with 64 LSTM

units for the first layer.
Bidirectional(LSTM (32)) The second layer will have a bidirectional

45 RNN layer with 32 LSTM units.
2. return_sequences True (for the first layer) Returns the entire output sequence for
the first layer.
3 input_shape (X_train_scaled.shape[1], 1)  The model expects sequences with a

length according to the number of fea-
tutres in X_train_scaled and one feature
per timestep.
4. Dense Layer y_train_resampled.max() + 1 This layer has the same number of units
as the classes in the y_train_resampled /
output layer.

5. Activation (Dense softmax The activation function is used in the out-
a}'cr) put layer for multi-class classification.
6. Optimizer adam Learning rate 0.001, beta_1=0.9,
beta_2=0.999, and epsilon=1e-07
7. Loss Function categorical_crossentry Loss functions for multi-class classifica-
don.
8. Metrics accuracy Metrics that the model will evaluate dur-

ing training and validation.

373
¢  The XGB model design used is presented in Table 3. 374
Table 3. XGB Model Design. 375
No Setting/Parameter Value Note
1. n_estimators 150 The number of trees constructed.
learning_rate 0.01 Step size learning to update model
weights.
2. max_depth 6 Maximum depth of each tree.
3. random_state 42 Seeds for reproduction
4. eval_metric "error”, "logloss"| Metrics for evaluating model perfor-
mance during training
5. eval_set (X_val, y_val) Dataset used for evaluation of model per-
formance during training,
6. verbose True Determines whether evaluation metric
output is printed during training,
7. n_estimators 150 The number of trees constructed.
376

4. Model Training: The model is trained using the fit method on training data that has been 377
scaled and balanced. Cross-validation was also done with a 10% validation subset of the 378
training data set. The result will be the predicted probability for each model, namely 379

BiGRU, BiLLSTM, and XGB. 380

5. Ensemble predictions are carried out using the following steps: 381
. Prediction Probability Extraction: Prediction probabilities from BiGRU, BILSTM 382
models, and positive class probabilities from XGBoost are extracted. 383

e Meta-learner training is carried out based on feature stacks from previously made 384
mode! predictions so as to produce continuous predictions from XGBRegressor. 385
XGBRegressor parameters are presented in Table 4. 386

387
388
389
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Table 4. XGBRegressor Model Design. 390
No Setting/ Parameter Value Note
1. n_estimators 100 The number of trees constructed.
learning_rate 0.1 Step size learning to update model
weights.
2. max_depth 3 Maximum depth Each tree.
3. objective regsquarederror The objective functon used f(@aiﬂiﬂg.
4. booster gbtree Gradient boosting based trees
5. n_estimators 100 The number of trees constructed.

391
e  The results of the final predictions are rounded to the nearest integer, which may 392
indicate the prediction class in the case of classification. Then, the output is con- 393

rted into classification results. 394

6. EBBler training the ensemble model, the testing data is tested with the model, and then 395
the accuracy, precision, recall, f1, and specificity are calculated. 396

4. Results and Discussion 397

In this section, the proposed method is tested with two diabetes datasets, namely ISD 398
[7] and PID [9], [10]. These two datasets were chosen because they are the two most popular 399
datasets; however, as previously discussed, this research focuses more on the PID dataset 400
because it is relatively more challenging than PID. More detailed features of the PID and ISD 401

datasets are presented, respectively, in Tables 5 and 6. 402
Table 5. PID Dataset Details 403
No Sen‘w-/Parameter Note
1. Pregnancies Number of pregnancies
2. Glucose 2-hour plasma glucose concentration in the oral glucose tolerance test
3. BloodPressure Diastolic blood pressure (mm Hg)
4. SkinThickness Triceps skinfold thickness (mm)
5. Insulin 2-hout serum insulin (mu U/ml)
0. BMI Body mass index (weight in kg/ (height in m)2)
7. DiabetesPedigree- Function of diabetes pedigree
Function
8. Age Age (years)
9. Outcome Classification results (0 or 1, where 1 indicates diabetes and 0 does not)
Table 6. [SD Dataset Details 404
No Setting/Parameter Note
1 1D Unique identification for each record.
No_Patien The patient number may be another form ot identification.
3 Gender Patient gender (F for female, M for male).
4 Age Patient age.
5 Urea Utrea level in the blood.
[ Cr (Creatinine) Creatinine level in the blood.
7 HbAlc Hemoglobin Alc (long-term blood sugar control indicator).
8 Chol (Cholesterol) Total cholesterol level.
9 m; (Triglycerides) Triglyceride level.
10.  HDL{High-Density Lipoprotein) Good cholesterol.
11. LDL (Low-Density Lipoprotein) Bad cholesterol.
12. VLDL (Very LDL) Bad cholesterol.
13. BMI (Body Mass Index) Body mass index.

14, Class 'N' for normal, "Y' for diabetes, 'P' for pre-diabetes
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The PID and ISD datasets have a different focus d:Lm composition, influencing their
approach to research and development of predictive models forflEpe 2 diabetes. The PID
dataset is focused on Pima women over 21 years of age, primarily due to the high prevalence
of type 2 diabetes in this group@Rd its association with risk factors such as gestational diabe-
tes[37]. The dara included are the number of pregnancies, plasma glucose, blood pressure,
and other variables usetul in identifying the risk of type 2 diabetes. PID can be more ditficult
to predict with its homogeneity and limited variables, even though this &set is clean with
no missing values or data. Duplicates, with a distribution of 500 records for no diabetes and
2068 for diabetes[38).

In contrast, the ISD dataset captures a more diverse population from Iraq, with broader
data, including lipid profiles and HbAlc. This diversity allows the creation of more robust
predictive models, but like PID, ISD also has no missing values or duplicates, showing good
data cleanliness. The class distribution on the ISD was 103 entries for class 'N', 844 for "Y',
and 53 for 'P', indicating an uncqual distribution similar to PIIEEJo overcome this imbalance,
both datasets apply the SMOTE-Tomek technique to 80% of the training dataset to improve
the quality of machine learning, The results of this resampling, which aims to provide a more

balanced class distribution, are presented in Figure 2.
Before Resampling After SMOTE After SMOTE Tomek
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389 389

Majar Minor
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Figure 1. Before after SMOTE-Tomek (a)PID Dataset; (b) ISD Dataset.
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After carrving out resampling, normalization was carried out using a standard scaler.
Then the training and validation process was carried out on the three base learners, namely
BiGRU, BILSTM, and XGB. Accuracy and loss plots for each model are presented in Figure
3 for BiGRU on the PID dataset and Figure 5 for the ISD dataset. Meanwhile, the BILSTM
method plots in Figure 4 for the PID dataset and Figure 6 for the ISD dataset. In more detail,
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51
the results of all base learners are presented ?Table 5. This table shows that the performance 440
of XGB is the best on both datasets, followed by BiGRU and BiLSTM. The performance of 441
BiGRU and BiLSTM may not be special. This is because the design of BILSTM and BIGRUM 442
is relatively simple, with only three lavers. The purpose of this layer's simplicity is to reduce 443
computational complexity, considering that the proposed method uses three base learners, 444
two of whom are deep learning methods. Because the stacking ensemble can combine the 445
performance of all three base predictors, we reduce the complexity of the BIGRU and 446
BiLSTM models. So even though the prediction results of each model, especially BIGRU and 447
BiLLSTM, appear relatively weak (see Table 5), after being combined with an ensemble, the 448

method can recognize the diabetes dataset powerfully and accurately (see Figures 7 and 8). 149
Table 5. Base Learner Results Details 450
Dataset Method Acc_train Acc_val Loss_train Loss_val
PID BiGRU 0.8515 0.8421 0.3543 0.3319
BILSTM 0.7735 0.7500 0.4508 0.5120
XGB 0.9623 - - -
ISD BiGRU 0.9995 0.9650 0.0022 0.1723
BiLSTM 0.9926 0.9500 0.0192 0.2835
XBG 0.9912 - - -

Confusion Matrix

True labels

predicted labels

451
Figure 6. Final prediction for PID dataset using the proposed method 452
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Figure 7. Final prediction for ISD dataset using the proposed method 454
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Fromgc results presented in Table 5, it appears that XGB performs better than BIGRU 455
and BiLSTM on both datasets. BIGRU and BiLSTM show lower performance, possibly be- 456
cause these deep learning models require large datasets to perform optimally. In this context, 457
simpler designs aim to reduce computational overhead, considering the use of multiple base 458
learners in one ensemble. However, the results of the three base learners above can still be 459
maximized with a stacking-boosting ensemble, where it appears that all testing results on the 460
two datasets produce an accuracy of 1.0, and this means that the same values are obtained for 461
precision, recall, specificity, and f1. This is because using XGB as a2 meta-learner in the stack- 462
ing ensemble allows more effective integration of predicdons from the base learner. XGB 463
performs regularization and handles overfitting efficiently, ensuring the resulting predictions 464
are accurate and generalizable. The proposed method can also reduce bias and variance, pro- 465
ducing a more stable and robust model for new data and hidden variables in the training 466

dataset. 167
5. Comparison 168

In this section, we explore the high performance of our proposed method across two 469
different datasets, demorffhting its robustness and precision. We also compared several pre- 470

vious methods that used the same dataset, as shown in Table 6. 4
Table 6. Comparison testing results with prior art 472
Dataset  Method Accuracy Recall Precision F1 Specificity
PLD Ref |2 0.7710 0.70 (.68 0.69 -
Ref [12] 0.78 0.85 0.81 0.83 .
Ref [4] 0.7957 0.8133 0.8940 0.8517 0.7500
Ref [13] 0.871 0.857 0.806 0.830 -
Ref [17] 09342 0.9767 0.9545 0.9655 0.9394
Ref [23] 0.935 0.85 - - 0.98
Ref [1](2GDNN 0.97248 0.97245 0.97342 0.97255 -
+ 02GDNN)
Ref[l] RE+  0.97931 0.97931 0.98119 0.97954 .
ORF)
Ref [36] 0.9807 0.9846 0.9522 0.9681 -
Ours Method 1.0000 1.0000 1.0000 1.0000 1.0000
ISD  Ref [1J(2GDNN 0.97333 0.97333 0.97281 0.97265 -
+ O2GDNN)
Ref [12] 0.99 1.00 0.94 0.97 .
Ref[1] (RE+  1.0000 1.0000 1.0000 1.0000 :
ORF)
Ours Method 1.0000 1.0000 1.0000 1.0000 1.0000
473

The ISD dataset has proven easier to recognize, as evidenced by the performance of the 474
base learner in refs [1] and [12]. Although research [1] also succeeded in getting perfect per- 475
formance on the ISD dataset, on the PID dataset, the accuracy, recall, and fl were around 476
0.97, and the precision was around 0.98. However, if we focus on recall performance and 477
accuracy, the method [36] is superior to reference [1]. In medical practice, the choice of model 478
cvaluation metrics is strongly influenced by the consequences of diagnostic errors. Recall 479
(sensitivity) and specificity are two very critical metrics because they are directly related to 480
patient clinical outcomes. High recall is essential in a medical context because it ensures that 481
the model identifies almost all positive cases, such as serious illnesses. Failure to detect posi- 482
tive cases may result in not implementing necessary treatment, worsening the padent's condi- 483
tion and increasing the risk of serious complications. Therefore, high recall helps start treat- 484
ment as quickly as possible, vital for diseases with serious health implications, such as cancer 485
or heart disease. On the other hand, high specificity reduces the possibility of wrong diagnosis 486
in healthy individuals. Low specificity leads to many “false positives,” in which individuals 487
who do not have the disease are considered patients, resulting in unnecessary anxiety, further 488
medical testing, and potentially risky interventions. High specificity is important to avoid these 489
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costs and risks, ensuring that only those who genuinely need treatment receive further inter-
vention[26], [39].

Finding a balance between recall and specificity is important because placing too much
emphasis on one can come at the expense of the other. For example, increasing recall may
decrease specificity, which may be undesirable in certain medical conditions. Therefore, these
two metrics are often weighed in medical settings based on clinical priorities and the conse-
quences of diagnostic errors. Additionally, accuracy can provide a general idea of model reli-
ability but may be less informative in imbalanced datasets, where most classes can distort the
petception of model performance. Precision and [EfJscores are also important, as precision
indicates the accuracy of positive predictions, and the F1 score balances precision and recall.
In practice, F1 scores are often used to assess model performance on imbalanced datasets,
providing a more holistic insight into a model's effectiveness in identifving positive cases
without overpredicting false positives.

6. Conclusions

This research succeeded in developing a robust method for diabetes classification by
combining techniques from deep learning and ensemble learning, especially using the
SMOTE-Tomek method for data balancing and XGBoost as a meta-learner in the stacking
framework. Using BiLSTM, BiGRU, and XGBoost as base learners shows that integrating
these approaches can increase accuracy, precision, recall, and model specificity. The final re-
sults confirm that ensemble techniques with a rigorous meta-learner can minimize the indi-
vidual weaknesses of each model and improve generalization on complex and imbalanced
medical data. This indicates the importance of a hybrid approach in developing medical diag-
nostic tools, especially in the face of the wide and inconsistent data variance often found in
health datasets.
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