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Speech Emotion Recognition (SER) plays a vital role in supporting applications such as
healthcare, human—computer interaction, and security. However, many existing ap-

*

proaches still face challenges in achieving robust generalizatjgn and maintaining high re-
call, particularly for emotions related to stress and anxiety. “:is study proposes a dual-
stream hybrid modgh that combines prosodic features with spatio-temporal representa-
tions derived from the Multitaper Mel-Frequency Spectrogram (MTMES) and the Con-
stant-Q Transform Spectrogram (CQTS). Prosodic cues, including pitch, intensity, jitter,
shimmer, HNR, pause rate, and speech rate, were processed using dense layers, while
MTMFS and CQTS features were encoded with CNN and BiGRU. A Mulﬁfqad Atten-
tion mechanism was then applied to adaptively fuse the two feature streams, allowing the
model to focus on the most relevant emotional cues. Evaluations conducted he RAV-
DESS dataset with subject-independent 5-fold cross-validation demonstrated an accuracy
of 97.64% and a macro Fl-score of 0.9745. These results confirm that combining prosodic
and advanced spectrogram features with attention-based fusion improves precision, re-
call, and overall robustness, offering a promising framework for more reliable SER sys-
tems.

Keywords: Speech Emotion Recognition; Prosodic Features; Multitaper Mel-Frequency
Spectrogram; Constant-Q Transform; Attention Mechanism.

1 [Foduction
peech Emoﬁonpogniﬁon (SER) has emerged as a significant research area over
the last two decades. Emotions play a crucial role in human communication, influencing
social interactions, decision-making, and mental health conditions. SER systems offer
broad opportunities in various applications, ranging from human-computer interaction
(HCI) and technology-based education to mental health services, security systems, and
intelligent vehicles [1-3]. Previous research has shown that speech signals contain two
main components: linguistic information that conveys literal meaning, and paralinguistic

information that reflects emotional aspects [1]. Paralinguistic information is considered
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more relevant in identifying emotional states such as stress and anxiety because it is rela-
tively independent of lexical and linguistic content. This makes paralinguistic-based SER
very promising for detecting psychological conditions, especially those related to stress
and anxiety.

Prosody, which encompasses variations in pitch, intensity, pauses, syllable duration,
and rhythm of speech, has been recognized as an important indicator in emotion analysis
[4]. Kuuluvainen et al. [5] asserted that prosody plays a role in facilitating the understand-
ing of statistical patterns in the speech stream, thereby enhancing language learners' abil-
ity to capture hidden structures. In the context of SER, prosodic cues have been shown to
significantly contribute to the model's ability to distinguish emotions, particularlyshose
related to stress and anxiety. Shan [6] noted that intonation, stress, and rhythm have a
direct impact on the interpretation of a speaker's intent and emotions, making prosody a
crucial element in understanding conversational dynamics. Furthermore, research [7]
shows that prosodic variations are often the most consistent nonverbal cues when some-
one is experiencing emotional distress. For example, higher pitch, increased speech rate,
jitter, and unstable shimmer are often associated with stress or anxiety.

SER methodology has evolved rapidly, from classicalgmachine learning (ML) ap-
proaches to deep learning. Traditional approaches typically rely on hand-crafted features
such as Mel-Frequency Cepstral Coefficients (MFCC) [8-11], Liggar Predictor Coefficients
(LPC) [12,13], and prosodic features [14,15] processed through classification models such
as Support Vector Machine (SVM) [16], Hidden Markov Models (HMM) [17,18], or Ran-
dom Forest (RF) [19,20]. While quite effective on small and clean datasets, these ap-
proaches often fail to generalize tgmgal-world environments with varying speakers, ac-
cents, and background conditions. With the advent of deep learning approaches, such as
CNNs [21-23], RNNs [22,24], and Transformers [25,26], the accuracy of SER has signifi-
cantly improved. CNNs are effective in extracting spectral patterns from speech spectro-
grams, while RNNs, such as GRUs and LSTMs, are capable of capturing long-term tem-
poral dependencies [27-29]. Furthermore, the integration of attention mechanisms has
been shown to help models focus more on emotion-relevant signal regions, thus improv-
ing parformance [29-32].

I;u-ith the development of deep learning-based methods, the use of spectrograms has
become a popular approach for extracting speech acoustic patterns. One commonly used
spectrogram is the Log-Mel Spectrogram; however, this representation still faces limita-
tions in adaptive resolution and sensitivity to spectral leakage, which can reduce the mod-
el's ability to distinguish emopgns with similar acoustic characteristics [33,34]. Therefore,
this study hypothesizes that the Multitaper Mel-Frequency Spectrogram (MTMFS) and
Constant-Q Transform Spectrogram (CQTS) can provide richer representations than con-
ventional spectrograms [1,35,36]. The MTMFS is expected to produce a more stable and
detailed spectrum, while the CQTS is believed to capture low-frequency variations vg
higher resolution and fast temporal dynamics at high frequencies, thereby improving the
accuracy of emotion detection, particularly in low-arousal and high-arousal classes.

Although various approaches have made significant progress, SER still faces se 1
key challenges. First, the problem of overfitting on small datasets, which often occur;g
to the limited number of available samples [37]. Second, the lack of in-depth exploration
of prosodic features, despite prosody having long been recognized as a key indicator of
stress. Third, research tends to prioritize overall accuracy over recall, which can resultin
missing cases of mental health-related emotions. Finally, the lack of multi-modal feature
integration, as most studies still rely on a single feature type, results in an incomplete
representation of complex emotional information.

Recall is one of the most crucial metrics in SER, reflectingg model’s ability to detect
all relevant positive cases. Achieving high recall is crucial to ensure that no emotional
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samples are missed, especially for emotions that are difficult to recognize. In the context 94
of stress and anxiety detection, recall becomes even more vital because incorrectly detect- 95
ing individuals experiencing stress (false negatives) can have a directimpact on a person's 9
psychological well-being, risking more than false positives [38—40]. Unfortunately, most 97
SER research still focuses on overall accuracy rather than maintaining optimal recall [29- 98
32]. Several studies, such as [2,27,28] report that recall is often lower than accuracy, espe- 9%
cially for emotion classes related to stress and anxiety. 100
To address this challenge, this study proposes a hybrid dual-stream architecture that 101
combines prosodic modulation and spatio-temporal features based on MTMFS and CQTS. 102
The prosodic branch is designed to capture the temporal dynamics of prosody through 103
dense layers, while the spectrogram branch uses CNN and BiGRU to extract spatio-tem- 104
poral patterns from MTMFS and CQTS. The results from both branches are then fused 105
through a Multi-Head Attention Fusion mechanism, which adaptively weights the most 106
relevant features. With this design, this study contributes to improving recall without 107
compromising overall accuracy, thereby providing more reliable emotion detection, espe- 108
cially under stressful and anxious conditions. 109

2. Related Works 110

Currently, research related to SER has been conducted using various feature and 111
model approaches. Previously, many studies relied on conventional acoustic features such 112
as MFCC, LPC, and prosodic cues, which were fhexm-ncessed using classical ML classi- 113
fication algorithms. Research [2] employed MFCC on the RAVDESS dataset with SVM, 114
achieving an accuracy of approximately 82%. However, this method is generally limited 115
in its applicability and sensitive to noise, resulting in low recall performance for high- 116
arousal emotions. 7z

Advances in deep learning allow for richer feature representation. Research [41] pro- 118
posed a Multi-Scale Feature Pyramid Network (MSFPN), which combines a Multi-Scale 119
CNN (MSCNN) with Convolutional Self-Attention (CSA) and BiLSTM to capture tem- 120
poral context. Egaduations were conducted on the [IEMOCAP and RAVDESS datasets. The 121
results showed an Unweighted Accuracy (UA) of 86.5% on RAVDESS. This approach ex- 122
cels because it preserves multi-granularity information while improving local correlations 123
between features through CSA. Furthermore, despite the relatively good accuracy perfor- 124
mance, these studies still focused on UA and WA without an in-depth analysis of recall 125
within specific emotional classes. 126

Multi-feature fusion-based approaches were also developed. Bhangale et al. [1] in- 127
troduced the Parallel Emotion Network (PEmoNet), which combines MTMFS, Gamma- 128
tonegram (GS), and CQTS. Evaluations on EMODB and RAVDESS demonstrated accu- 129
racy of up to 97% with an average Fl-score of 0.97. Ablation studies demonstrated that 130
MTMEFS and CQTS contributed significantly to performance improvements compared to 131
using a single spectrogram type alone. However, using all three spectrograms simultane- 132
ously increases computational complexity, making the integration more challenging. 133

Other studies have begun to emphasize the importance of prosodic features. Kuulu- 134

inen et al. [5] showed that variations in pitch, intonation, and pauses can fadilitate the 135
gming of statistical dependencies in continuous speech. Meanwhile, Guo et al. [7] ap- 136
plied a prosody- and spectrogram-based dual-stream architecture to a Mandarin dataset, 137
and successfully improved the sensitivity of negative emotion detection. However, recall 138
results still varied across classes, so the risk of false negatives for stress and anxiety emo- 139
tions remained high. 140

The application Ettenﬁun mechanisms has also been shown to improve perfor- 141
mance. Makhmudov et al. [32] developed a hybrid CNN-LSTM model with attention, 142
using RMS, ZCR, and MFCC features. Evaluation on TESS and RAVDESS yielded 143
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accuracies of up to 99.8% and 95.7%, respectively. %e attention mechanism allows the 144
maodel to focus on significant emotional segments, while the CNN handles spectral repre- 145
sentation and the LSTM captures long-term temporal dependencies. However, this re- 146
search is still limited to conventional acoustic features and tends to emphasize global ac- 147
curacy. 148

Bhanbhro et al. [29] compared CNN-LSTM with Attention-Enhanced CNN-LSTM on 149
the RAVDESS dataset. The use of attention improved accuracy by more than 2% com- 150
pared to standard CNN-LSTM. The attention mechanism was demonstrated to enhance 151
the separation between similar emotion classes while maintaining performance under 152
noisy conditions. However, this research was still limited to Mel-spectrogram-based spec- 153
tral features, without the integration of prosodic cues, which are important for detecting 154
stress and anxiety. 155

Although various SER studies have achieved high accuracy, significant limitations 156
remain. Conventional feature-based approaches (MFCC, LPC) are sensitive to noise and 157
less effective in capturing the dynamics of high-arousal emotions, such as fear and anger. 158
Multi-scale deep learning methods enhance representation but often prioritize global ac- 159
curacy over recall. Multi-feature fusion studies have demonstrated the dominant contri- 160
bution of MTMFS and CQTS through ablation studies. Meanwhile, attention mechanism- 161
based models improve accuracy and class separation, but are still limited to spectral fea- 162
tures without the integration of prosodic cues. Therefore, methods that integrate prosodic 163
cues, spatio-temporal fusion of MTMFS and CQTS, and adaptive attention mechanisms 164
are needed to improve recall and robustness, especially for stress and anxiety detection. 165

3. Proposed Method 166

The method proposed in this study aims to integrate prosodic and spectral features 167
into aricher spatio-temporal representation, thereby improving emotion detection perfor- 168
mance. The RAVDESS dataset was chosen as the experimental benchmark because it pro- 169
vides a corpus of emotional conversations under controlled conditions with professional 170
actors. The dataset compriseseight distinct emotion classes, expressed by 24 speakers with 171
both male and female voices, ensuring a diverse range of gender and vocal characteristics. 172

Prosodic Features (Temporal): pitch

openSMILE
contour, intensity, jitter, shimmer, HNR,| Dense Layer
Python

pause rate, -;pccch rate

Spectral Features (Spatial): CNN (Spatial BiGRU (Temporal
MTMEFS and CQTS Encoder) Encoder)

| Dense layers + Fusion feature with

‘ Softmax Multi-Head Attention

Testing Phase }—’{Evaluaﬁon metrics

f 173

Figure 1. Proposed dual-stream hybrid. 174

Training Phase
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Importantly, RAVDESS offers emotions with both low and high arousal, making it 175
well-suited for testing methods designed to improve recall in stress and anxiety detection 176
scenarios. To address this challenge, the system is designed with a hybrid dual-stream 177
architecture comprising a prosodic feature branch and a spectrogram feature branch, 178
which are then combined through an attention-based fusion mechanism. 179
3.1 Prosodic Features 180

Prosodic features were extracted from the RAVDESS dataset (48 kHz, mono) using 181
the openSMILE Python library. The extracted features included pitch contour, intensity, 182
jitter, shimmer, Harmonics-to-Noise Ratio (HNR), pause rate, and speech rate. Each seg- 183
ment yielded approximately 40-60 prosodic features. These features were processed 184
through stacked dense layers (128 — 64 units, ReLU activation, dropout 0.3), resulting in 185
a 64-dimensional representation vector. 186
3.2 Spatio-Temporal Features 187

Spatial features were extracted using a parallel representation of the Multitaper Mel- 188
Frequency Spectrogram (MTMEFS) and the Constant-Q Transform Spectrogram (CQTS) to 189
enhance the discriminative power of emotional cues. MTMFS employed multiple orthog- 190
onal tapers instead of a single Hamming window, reducing spectral leakage and captur- 191
ing subtle variations in pitch, timbre, and intonation. A 64-point Mel filterbank witha25 192
ms frame size, 10 ms hop length, and a 2048-point FFT was applied, providing a stable 193
and high-resolution spectral envelope. CQTS offered an adaptive time—frequency l"eﬂl* 194
tion, providing superior frequency resolution at lower frequencies (suitable for low- 195
arousal emotions, nﬁas sadness and calmness) and higher temporal resolution at higher 196
frequendies (critical for high-arousal emotions, such as anger and surprise). 197

Each spectrogram was processed independently using a CNN-based spatial encoder 198
with 3x3 kernels to capture local tingesfrequency patterns. Each CNN comprised three 199
convolutional blocks with filters of [32, 64, 128], each followed by Batch Normalization, 200
ReLU activation, and Max Pooling. Instead of full flattening, the CNN outputs were re- 201
tained as sequence embeddings (time steps x feature dimension) to preserve temporal in- 202
formation. The sequence embeddings from MTMFS and CQTS were then individually 203
passed through a BIGRU-based temporal encoder (2 layers, 128 hidden units each, drop- 204
out 0.3), allowing each branch to capture its long-term temporal dependencies. 205

The BiGRU outputs were subsequently concatenated and normalized using Layer 206
Normalization to align feature scales and stabilize recurrent learning, This design enables 207
the model to leverage both stable spectral envelopes from MTMFS and adaptive time— 208
frequency dynamics from CQTS in a balanced manner. Formally, the spatio-temporal rep- 209
resentation is given by: 210

H, = LayerNorm (Concat (BiGRU(CNN(XWMFSJ), BiGRU (CNN(XCQTS)))) I

where Xypyrs and Xegrg denote the MTMFS and CQTS matrices of dimension T % F. 211
3.3 Fusion Configuration 212

The prosodic embedding and the spatio-temporal embedding from the BIGRU were 213
combined through a Multi-Head Attention (MHA) layer to weight the most relevant fea- 214
tures for emotion recognition adaptively. Prior to fusion, the prosodic embedding was 215
normalized using Layer Normalization, aligning its scale with the spatio-temporal em- 216
bedding to ensure balanced contribution from both streams. This step is particularly cru- 217
cial since prosodic features and spectrogram-derived embeddings differ in dimensionality =~ 218
and statistical distribution. An MHA module then processed the normalized embeddings 219
with eight attention heads, which provided the best balance between recall improvement 220
and computational efficiency. Formally, the fused vector can be expressed as: 221
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z
= Concﬁmtention(@, K, V)(LayerNorm(Ey,oqoqy)), Attention(Q, K, V)( Eqpectogram ))

Where Ejrodoay and Espectogram denote the n alized prosodic embedding and the
spatio-temporal embedding, respectively, and ¢,K,V denote the query, key, and value
vectors of the respective feature branches.
3.4 Classifier

The fused representation was passed through fully connected layers [256, 128, 64]
with ReLU activation and dropout 0.5. The final layer loyed a Softmax function to
classify eight emotional classes as defined by RAVDESS. The loss function used was Cat-

@

egorical Cross-Entropy:
[
Las== ) yilog(3) ]
i=1

%ere C is the number of classes, y; the true label, and ¥; the predicted probability.

3.5 Tygining Strategy

ﬁne mod s trained using the Adam optimizer with a learning rate of le-4, a batch
size of 32, and a maximum of 100 epochs. Early stoppjmg was applied with a patience of
10 epochs, monitoring validation macro Fl-score and validation loss to prevent overfitting
and ensure balanced recall and precision across classes. This strategy allows the model to
halt training when further improvements on the validation set become marginal, reducing
the risk of overfitting while maintaining generalization. To further enhance robus , a
5-fold subject-independent cross-validation was conducted, ensuring th: eakers n the
training set did not appear in the testing set. This evaluation protocol provides a more
reliable estimate of the model’s performance across different speakers.

Table 1. Configuration for the proposed model.

Component Proposed Configuration

40-60 features (pitch, jitter, shimmer, intensity, HNR, pause rate,
speech rate)
Dense layers (128 — 64), ReL.U activation, Dropout 0.3, Layer Nor-
malization
Parallel MTMFS (64 Mel filters, 25 ms frame size, 10 ms hop,
FFT=2048) and CQTS (84 bins, 12 bins)
3 convolutional blocks (filters [32, 64, 128], kernel size 3x3,
BatchNorm, ReLU, MaxPooling)
BiGRU per branch (2 layers, 128 hidden units, Dropout 0.3) —
Concatenation — Layer Normalization
Multi-Head Attention (8 heads); prosodic embedding normalized

Prosodic Features
Prosody Encoder
Spectrogram Input
CNN Encoder
Temporal Encoder

Fusion Layer

E prior to fusion
nse layers [256, 128, 64], ReLU activation, Dropout 0.5, Softmax
output (8 classes)
Optimizer Adam (learning rate = Te-4)
100 epochs, Batch size 32, Early Stopping (patience=10, moni-
toring validation loss & macro F1), 5-fold subject-independent CV
valuation Metrics Precision, Recall, F1-score, Accuracy

Classifier

Training Strategy

3.6 Evaluation Metrics
The evaluation metrics included precision, recall, specificity, F1-score, AUC, and ac-

curacy.

22
23
224

242

243
244
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e Accuracy measures the proportiopgof correctly classified samples but may be mis- 245

leading for imbalanced emotional classes. 246
*  Precision indicates the fraction of correctly predicted positive samples among all pre- 247
gted positives, ensuring the reliability of stress predictions. 248
. ecall (sensitivity) measures the proportion of correctly detected positive cases; in 249

stress and anxiety detection, recah is critical since missing stressed cases (false nega- 250

tives) can be more harmful than false positives. 251

s Fl-score, the harmonic mean of precision and recall, balances sensitivity and reliabil- 252
ity. 253

4. Rﬁ\““s and Discussion 254
e dataset used in this study is the Ryerson Audio-Visual Database of Emotional 255

Speech and Song (RAVDESS), a widel d resource in Speech Emotion Recognition 256
(SER) research. This dataset comppg }g:cmrs (12 men and 12 women) who voiced 257
speech in eight emotion categories: neutral, calm, happy, sad, angry, fearful, disgust, and 258
surprised. Each emotion was recorded at two intensity levels: normal and strong, result- 259

ing in a total of 1,440 records. The data distribution consisted of seven classes, with one 260

other class being a minority (see Figure 2 for further details). 261
Fear Calm
192 (13.3%) 192 (13.3%)
Disgust Surprise
192 (13.3%) 192 (13.3%)
Angry Happy
192 (13.3%) 192 (13.3%)
Neutral
sad 96 (6.7%)

192 (13.3%) 262
Figure 2. Class distribution of the RAVDESS dataset. 263
4.1. Prosodic Features 264

Figure 3 displays a sample of prosodic extraction results, including pitch, intensity, 265
HNR, loudness, jitter, shimmer, pause rate, and speech rate. The observed patterns illus- 266
trate acoustic dynamics over time. Pitch and intensity exhibit more fluctuating contours 267
in segments with high arousal, such as fearful and angry emotions. HNR decreases in 268
certain sections, which is typically associated with decreased voice quality resulting from 269
vocal tension. Jitter and shimmer are relatively higher in segments with low vocal stabil- 270
ity, which often occur in states of anxiety. Pause and speech rate reflect the rhythm of 271
speech; fewer pauses and a faster speech rate are seen in emotionally intense sections. 272
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Figure 3. Example of extracted prosodic features from a speech segment, including pitch contour,
intensity contour, HNR contour, loudness contour, jitter, shimmer, pause rate, and speech rate.

Sample Prosodic Features (openSMILE eGeMAPS)
242639

15

Value

10

22673

§
o“'"'@
&

Figure 4. Sample plot Prosodic Features using openSMILE.

This relationship is reinforced by Figure 4, which presents a statistical summary of
prosodic features with openSMILE eGeMAPS. Loudness values are relatively higher in
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4096

2048

1024

15
Time

. MTMFS (Multitaper Mel-Frequency Spectrogram)

segments with high arousal, while jitter, shimmer, and HNR show variations that are in
line with the temporal pattern in Figure 3. Thus, the values and patterns shown by Figures
3 and 4 reinforce each other, indicating that prosodic features can be consistent markers
in distinguishing certain emotional states, especially those related to stress and anxiety.
4.2, Spectrogram Features

Figure 5 shows an example of MTMFS and CQTS for a voice sample in RAVDESS.
MTMES, shown on the left, produces a relatively smooth and stable representation with a
clear energy distribution across the frequency range. This multitaper approach effectively
reduces spectral leakage and improves the accuracy of identifying subtle variations in
pitch, timbre, and intonation, which are highly relevant for distinguishing similar emo-
tions. Meanwhile, CQTS on the right displays a more adaptive frequency pattern, charac-
terized by high frequency resolution in low tones and high temporal resolution in high
tones. This enables CQTS to capture the subtle changes associated with low-arousal emo-
tions, such as sadness or calm, while also representing the rapid dynamics common to
high-arousal emotions, like anger or surprise. The combination of these two representa-
tions is ex ed to enrich the mapping of emotional features in speech signals, thereby
impruving@
trogram.

e model's accuracy in emotion recognition compared to using a single spec-

CQTS (Constant-Q Transform Spectrogram)

+0.dB +0.d8
-10 dB c -10 d8
2048 -20dB
%
-30dB -30 dB
c5
a0ds £ -40 dB
2
ca
-50 dB -50 dB
a
-60 dB -60 dB
-70 dB B -70 dB
-80 dB c1 -80 dB

Figure 5. Sample plot of Spectrogram (a) MTMEFS; (b) CQTS.

4.3. Results

@cmnprehensively evaluate the performance of the proposed model, a confusion
matrix representing the classification results of eight emotion classes on the RAVDESS
dataset was used. The values displayed in this confusion matrix are the aggregated results
of 5-fold cross-validation, providing a more stable picture and reducing bias caused by
certain data splits. With this approach, each fold alternates as test glata, while the other
folds serve as training data, ensuring that all samples contribute to both the training and
testing phases. The confusion matrix in Figure 5, the result of this aggregation, provides
detailed information on the distribution of correct predictions and misclassifications for
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each emotion class, gﬂwing for an in-depth analysis of the model's strengths and weak- 309

nesses in each emotion category. 310
311
I
2 2 1 1 0 s
(=]
E
s 2 0 1 1
[y 150
°
[ 0 0 0
& 125
=
T RE- 1 2 0 1 2
L3 - 100
g .
Eg- o 0 0 0 0
75
2 2 0 0 0
2 - 50
E
£- o 1 1 2 [ 1 90 il
2
H -25
@
- 2 [ 0 1 [ 3 1
5
w ' ' . ' ' ' ' -0
Disqust Calm  Sad Happy Fear Angry Neutral Surprise
Predicted Label 312
Figure 5. Confusion matrix proposed method. 313

In general, the prediction distribution exhibits a dominant diagonal, indicating high 314
s. The Sad, Fear, and Calm classes show nearly perfect 315

accuracy across almost all cla
predictions with few misclassifications. However, some confusion is observed in the Neu- 316
tral class, which is sometimes predicted as Happy or Calm. Similarly, a small number of 317
Disgust and Surprise cases are swapped, although the numbers are relatively small. This 318

pattern suggy that the model is quite reliable in recognizing emotions with explicit 319

acoustic expressions, while confusion still occurs in classes with more subtle pr icfea- 320
tures, such as the Neutral class. For more details, see Table 2 for differences in precision, 321
recall, and f1-score values for each class. 322
Table 2. Classification Report of the Proposed Model on the RAVDESS Dataset. 323
Class ecision Recall F1-Score Support
Disgust 0.9788 0.9635 0.9711 192
Calm 0.9738 0.9688 0.9713 192
Sad 0.9846 1.0000 0.9922 192
Happy 0.9738 0.9688 0.9713 192
Fear 0.9796 1.0000 0.9897 192
Angry 0.9744 0.98% 0.9819 192
Neutral 0.9574 0.9375 0.9474 96
?,ll‘pl‘fﬁe 0.9788 0.9635 0.9711 192
ccuracy H = 0.9764 1440
Macro Avg 0.9752 0.9740 0.9745 1440
Weighted Avg 0.9763 0.9764 0.9763 1440
324

Table 2 shows that the model's performance demonstrates high consistency across 325
classes, with an average Fl-score approaching 0.98. Two classes, Sad and Fear, achieved 326
perfect recall (1.0000), indicating the model's ability to detect these emotions without 327




Computers 2025, 14, x FOR PEER REVIEW 11 of 15

losing relevant samples. This indicates the model's reliability in recognizing both low-and 328
high-intensity emotions, which are often challenging in SER. Meanwhile, the Neutralclass 329
achieved the lowest recall value, which, while still a good performance considering its 330
minority, suggests that its more subtle prosodic characteristics make it relatively difficult 331
to distinguish compared to other classes. These findings confirm that integrating prosodic 332
features with MTMFS and CQTS successfully strengthens the model's generalization, es- 333
pecially for classes that are acoustically susceptible to confusion, while maintaining a bal- 334
ance between precision and recall across emotion categories. 335
Furthermore, to assess the contribution of each component in the proposed architec- 336

re, an ablation study was conducted by removing or replacing specific parts of the 337
model. The primary goal of this ablation was to ensure that performance improvements 338
stem not solely from model cu@lexify but from the integration of the designed features 339
and mechanisms. Specifically, this study focuses on four aspects: (i) the role of prosodic 340
features in increasing sensitivity to stress and anxiety emotions, (i) the contribution of 341

MTMEFS and GRTS spectral representations compared to using only one type of spectro- 342
gram, and (iii) the effectiveness of the attepgion mechanism in balancing the contributions 343
of prosody and spatio-temporal feamres.@; results of this study are expected to clarify 344
the relative role of each component in achieving increased recall and robustness of the 345

model. 346
Table 3. Ablation study of the proposed method. 347
Study Accuracy Precision  Recall F1
Without prosody features 93.78 94.01 93.69 93.85
Without MTMFS features 93.23 93.42 93.23 93.32
Without CQTS features 95.18 95.25 95.18 95.21
Without attention mechanism 95.53 95.67 95.57 95.61
Proposed (full) 97.64 97.63 97.64 97.63

348

@nle 3 presents the results of ablation study to assess the contribution of each 349
component in the proposed architecture. It can be seen that removing prosodic features 350
decreased performance to 93.78% accuracy and 93.85% Fl-score, indicating that prosody 351
plays a significant role in detecting both high- and low-arousal emotions. This is con- 352
sistent with the hypothesis that prosodic cues provide additional sensitivity to stress and 353
anxiety dynamics. Removing MTMES features had the most significant impact, resulting 354
ina 93.32% decrease in F1-score. This finding confirms MTMFS's dominant role in enrich- 355
ing spectral representation and reducing spectral leakage, consistent with previous stud- 356
ies that identified MTMFS as the most stable representation in the RAVDESS dataset. 357
Meanwhile, removing CQTS features resulted in a more moderate performance reduction 358
(95.21% Fl-score), indicating a significant but less significant contribution than MTMFS. 359
This can be explained by CQTS being more prominent at low-frequency resolution, while 360
RAVDESS is relatively rich in prosodic and mid-spectral variations. 361
Removing the attention mechanism also had a significant impact (F1-score 95.61%). 362
Although CNN and BiGRU were still able to capture spatial and temporal patterns, the 363
lack of attention caused an imbalance in the contributions between features, resulting in 364

decreased recall in the minority class. Overall, the ablation results showed that: 365
e MTMEFS makes the largest contribution to classification stability and accuracy, 366
e Prosodic features directly improve recall in the stress and anxiety classes, 367
s CQTS adds depth to the representation but with a more moderate impact, 368

e  The attention mechanism ensures adaptive integration between features, maintain- 369
ing a balance between precision and recall. 370
371
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The best performance gthe proposed method (full) shows that the combination of 372
prosodic cues, MTMFS, CQTS, and the attention mechanism synergistically contributesto 373

achieving optimal generalization. 374
After confirming th tribution of each component through ablation studies, the 375
next step was to mmpar:gperformance of the proposed mo ith previous research 376
on the RAVDESS dataset. Table 4 summarizes the comparison results with several state- 377
of-the-art models. 378
Table 4. Results of proposed model and comparison with prior works. 379
Study Accuracy Precision  Recall F1
SVM [16] 7240 72.20 72.10 -
HuBERT + DPCNN + CAF [30] 81.86 - - 82.84
K-SVM + GWO (28] 87.00 88.00 85.00 86.00
1D CNN + Feature Fusion [2] 91.90 90.50 91.10 90.80
CNN+LSTM [32] 95.70 9349 94.99 94.20
MTMFS +GS + CQTS+ PEmoNet [1] 97.41 97.53 97.53 97.26
Ours 97.64 97.63 97.64 97.63

380

qﬂe results in Table 4 show the performance improvement of SER on the RAV-DESS 381
dataset using various approaches. The SVM-based methods [16] and K-SVM + GWO [28] 382
performed quite well in the classical machine learning category, with accuracies of 72.40% 383
and 87.00%, respectively. The HuBERT + DPCNN + CAF approach [30] achieved an F1- 334
score of 82.84%, confirming the potential of self-supervised learning-based representa- 385
tions. Model [2] achieved an Fl-score 0f 90.80%, demonstrating the effectiveness of feature 336
E\LEH. Research [32] further improved recall to 94.99% with an Fl-score of 94.20, thanks 387
to the LSTM’s ability to capture long-term temporal dependencies. 388

A study of MTMFS + GS + CQTS with PEmoNet [1] demonstrated competitive re- 389
sults, achieving an Fl-score of 97.26, which highlights the power of multi-spectrogram 390
fusion in enriching emotion representation. The model proposed in this study achieved 391
the highest performance. This achievement indicates that the integration of pros fea- 392
tures, MTMFS and CQTS fusion, and attention mechanisms can provide a better balance 393
between precision and recall, particularly since recall values are superior to other key met- 394
rics in supporting more reliable emotion detection, especially for stress and anxiety. 395

5. Conclusions 29

This study proposes a dual-stream hybrid architecture that integrates prosodic fea- 397
@es with spatio-temporal representations from the MTMFS and the ﬁQTS, combined 398
rough a Multi-Head Attention mechanism. The experime results on the RAVDESS 399
dataset using 5-fold subject-independent cross-validation demonstrated that the pro- 400
posed model cansistenb)utperformed state-of-the-art approaches, achieving an overall 401
accuracy of 97.64% and a macro Fl-score of 0.9745. More importantly, the model achieved 402
a recall of 97.64%, higher than previous studies that often prioritized accuracy at the ex- 403
pense of recall. This improvement confirms the effectiveness of integrating prosodic cues 404
with multi-spectrogram fusion to enhance sensitivity, particularly in detecting stress-and 405
anxiety-related emotions, where missing positive cases is highly detrimental. 406
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