Wijaya, Arnandia Raka (2018) IMPLEMENTASI ALGORITMA FP-GROWTH UNTUK MENCARI POLA PEMBELIAN KONSUMEN (STUDI KASUS TOKO KITA). Undergraduate thesis, UNIVERSITAS STIKUBANK SEMARANG.
PDF
Restricted to Repository staff only Download (2MB) |
Abstract
vi Data Mining adalah proses pencarian informasi dengan melakukan penggalian dari pola pola data transaksi dengan tujuan dapat memperoleh sebuah informasi yang berharga untuk mengelola data yang sangat besar.Pada Toko Kita setiap harinya terjadi ratusan transaksi. Dalam mempermudah melakukan pengelolaan penyediaan barang maka perlu diketahui produk apa saja dan itemset antar kaitan barangnya untuk membantu menangani penyediaan barang. Dalam kaitannya dalam mengatasi permasalahan penyediaan yang ada pada Toko Kita, data mining memiliki beberapa teknik salah satunya adalah teknik assossiasi. Teknik assossiasi dilakukan untuk menemukan aturan assossiatif antara suatu kombinasi item. Sedangkan beberapa metode algoritma yang dapat digunakan salah satunya adalah algoritma FP-GROWTH yaitu dalam pembangunan frequent itemsetnya algoritma FP-GROWTH menggunakan struktur data tree atau disebut FP-Tree, dari struktur FP-tree ini nantinya frequent itemset dapat langsung diekstrak dan diketahui hasilnya Adapun dalam penelitian ini data yang digunakan adalah data transaksi pada Toko Kita dari rentang waktu bulan November 2016 sampai Oktober 2017. Dimana dalam penelitiannya dihasilkan beberapa aturan assossiasi salah satunya yaitu {item1=899898910012GG FILTER 12} => {frequent=899190610101DJARUM SUPER 12} yang berarti item GG FILTER 12 muncul bersamaan dengan item DJARUM SUPER 12 dengan tingkat dukungan 0.02 dan tingkat kepercayaan 1.00.
Item Type: | Thesis (Undergraduate) |
---|---|
Additional Information: | NIM : 14.01.55.0068 SKR.I.05.02.1771 |
Uncontrolled Keywords: | Data Mining, Association Rule, FP-GROWTH |
Subjects: | T Technology > T Technology (General) |
Faculty / Institution: | Fakultas Teknologi Informasi > Program Studi Sistem Informasi |
Depositing User: | R Ria |
Date Deposited: | 19 Nov 2018 11:47 |
Last Modified: | 19 Nov 2018 11:47 |
URI: | http://eprints.unisbank.ac.id/id/eprint/4760 |
Actions (login required)
View Item |